Advertisement

Materials and Structures

, Volume 49, Issue 3, pp 829–841 | Cite as

Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen

  • B. HofkoEmail author
  • L. Eberhardsteiner
  • J. Füssl
  • H. Grothe
  • F. Handle
  • M. Hospodka
  • D. Grossegger
  • S. N. Nahar
  • A. J. M. Schmets
  • A. Scarpas
Original Article

Abstract

As a widely accepted concept, bitumen consists of four fractions that can be distinguished by their polarity. Highly polar asphaltene micelles are dispersed in a viscous phase of saturates, aromatics and resins (maltene phase). Different concentrations of asphaltenes in the bitumen result in a range of mechanical response properties. In an interdisciplinary study the impact of the maltene phase and asphaltenes on the linear viscoelastic behavior and the microstructure of bitumen were analyzed by creep recovery testing in a DSR and by atomic force microscopy (AFM). Therefore, bitumen was separated into the maltene and asphaltene fractions and artificial bitumen samples with different, pre-defined asphaltene concentrations were produced and investigated. It was found that the artificially produced, precipitated bitumen samples can be regarded as a representative, bitumen-like material in terms of mechanical behavior and microstructure. Asphaltenes play an important role in the typical viscoelastic behavior of bitumen being mainly responsible for stiffness and elasticity. Also, their concentration appears to be correlated to the occurrence and shape of the bee-like inclusions which can be typically observed by AFM.

Keywords

Bitumen composition DSR AFM Maltene Asphaltene Microstructure 

Notes

Acknowledgments

The authors would like to thank the Austrian Research Promotion Agency (FFG) for funding part of the presented research within the research project “Oekophalt”, as well as to Mr. Thomas Riedmayer for running the mechanical bitumen tests for this study.

References

  1. 1.
    OECD (2013) Spending on infrastructure 1995–2011—trends, policies, data. International Transport Forum of the OECD, Paris, p 58Google Scholar
  2. 2.
    CEN (2012) EN 12597: Bitumen und Bitumenhaltige Bindemittel—Terminologie. CEN, Brussels, p 18Google Scholar
  3. 3.
    Merino-Garcia D et al (2010) Petrophase 2009 panel discussion on standardization of petroleum fractions. Energy Fuels 24(4):2175–2177CrossRefGoogle Scholar
  4. 4.
    ASTM (2001) ASTM D 4124-01: standard test methods for separation of asphalt into four fractions. ASTM, Philadelphia, p 6Google Scholar
  5. 5.
    Lesueur D (2009) The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci 145(1–2):42–82CrossRefGoogle Scholar
  6. 6.
    Corbett LW (1969) Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Anal Chem 41:3CrossRefGoogle Scholar
  7. 7.
    Read J, Whiteoak D (2003) The shell bitumen handbook, 5th edn. Thomas Telford Ltd, London, p 464Google Scholar
  8. 8.
    Solaimany Nazar AR, Rahimi H (2009) Investiagtion on agglomeration-fragmentation processes in colloidal asphaltene suspensions. Energy Fuels 23(2):8CrossRefGoogle Scholar
  9. 9.
    Sheu EY (1996) Physics of asphaltene micelles and microemulsions—theory and experiment. J Phys 1996(8):17Google Scholar
  10. 10.
    Fawcett A, McNally T (2003) Polystyrene and asphaltene micelles within blends with a bitumen of an SBS block copolymer and styrene and butadiene homopolymers. Colloid Polym Sci 281(3):203–213CrossRefGoogle Scholar
  11. 11.
    Eyssautier J et al (2012) Organization of asphaltenes in a vacuum residue: a small-angle X-ray scattering (SAXS)–viscosity approach at high temperatures. Energy Fuels 26(5):2696–2704CrossRefGoogle Scholar
  12. 12.
    Pollack SS, Yen TF (1970) Structural studies of asphaltics by X-ray small angle scattering. Anal Chem 42(6):7CrossRefGoogle Scholar
  13. 13.
    Tripadus V et al (2004) The study of diffusive motion in bitumen compounds by quasielastic neutron scattering. Phys B 350(1–3):E455–E458CrossRefGoogle Scholar
  14. 14.
    Yarranton HW et al (2013) On the size distribution of self-associated asphaltenes. Energy Fuels 27(9):24Google Scholar
  15. 15.
    Haji-Akbari N et al (2013) A unified model for aggregation of asphaltenes. Energy Fuels 27(5):2497–2505CrossRefGoogle Scholar
  16. 16.
    Durand E et al (2010) Effect of chemical composition on asphaltenes aggregation. Energy Fuels 24(2):1051–1062CrossRefGoogle Scholar
  17. 17.
    Mikula RJ, Munoz VA (2000) Characterization of emulsions and suspensions in the petroleum industry using cryo-SEM and CLSM. Colloids Surf A 174:14CrossRefGoogle Scholar
  18. 18.
    Bearsley S, Forbes A, Haverkamp RG (2004) Direct observation of the apshaltene structure in paving-grade bitumen using confocal laser-scanning microscopy. J Microsc 215(2):7MathSciNetCrossRefGoogle Scholar
  19. 19.
    Forbes A et al (2001) Studies of the microstructure of polymer-modified bitumen emulsion using confocal laser scanning microscopy. J Microsc 204(3):252–257MathSciNetCrossRefGoogle Scholar
  20. 20.
    Handle F, Füssl J, Neudl S, Großegger D, Eberhardsteiner L, Hofko B, Blab R, Grothe H (2014) The bitumen microstructure: a fluorescent approach. Mater Struct. doi: 10.1617/s11527-014-0484-3  
  21. 21.
    Seifried CM, Crawshaw J, Boek ES (2013) Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning microscopy. Energy Fuels 27(4):1865–1872CrossRefGoogle Scholar
  22. 22.
    Soenen H et al (2013) Laboratory investigation of bitumen based on round robin DSC and AFM tests. Mater Struct 47(7):16Google Scholar
  23. 23.
    Yu X et al (2013) A systematic AFM-based method to measure adhesion differences between micron-sized domains in asphalt binders. Fuel 113:443–447CrossRefGoogle Scholar
  24. 24.
    Champion-Lapalu L et al (2002) Cryo-scanning electron microscopy: a new tool for interpretation of fracture studies in bitumen/polymer blends. Energy Fuels 16(1):143–147CrossRefGoogle Scholar
  25. 25.
    Loeber L et al (1996) New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. J Microsc 182(1):7CrossRefGoogle Scholar
  26. 26.
    Lyne ÅL et al (2013) Surface wrinkling: the phenomenon causing bees in bitumen. J Mater Sci 48(20):6970–6976CrossRefGoogle Scholar
  27. 27.
    Lu X et al (2005) Wax morphology in bitumen. J Mater Sci 40:8Google Scholar
  28. 28.
    Redelius P (2011) Asphaltenes in bitumen, what they are and what they are not. Road Mater Pavement Des 10(1):18Google Scholar
  29. 29.
    Sourty ED et al (2011) The microstructure of petroleum vacuum residue films for bituminous concrete: a microscopy approach. J Microsc 241(2):132–146CrossRefGoogle Scholar
  30. 30.
    Lackner R et al (2004) Multiscale modeling as the basis for reliable predictions of the behavior of multi-composed materials. Prog Eng Comput Technol 8:153–187CrossRefGoogle Scholar
  31. 31.
    Lackner R et al (2005) Is low-temperature creep of asphalt mastic independent of filler shape and mineralogy? Arguments from multiscale analysis. J Mater Civ Eng 17(5):485–491CrossRefGoogle Scholar
  32. 32.
    Aigner E, Lackner R, Pichler C (2009) Multiscale prediction of viscoelastic properties of asphalt concrete. J Mater Civ Eng 21:771–780CrossRefGoogle Scholar
  33. 33.
    Pichler C, Lackner R (2009) Upscaling of viscoelastic properties of highly-filled composites: investigation of matrix-inclusion type morphologies with power-law viscoelastic material response. Compos Sci Technol 69:2410–2420CrossRefGoogle Scholar
  34. 34.
    Pichler C, Lackner R, Aigner E (2012) Generalized self-consistent scheme for upscaling of viscoelastic properties of highly-filled matrix-inclusion composites—application in the context of multiscale modeling of bituminous mixtures. Compos B 43:457–464CrossRefGoogle Scholar
  35. 35.
    Eberhardsteine L, Füssl J, Hofko B, Handle F, Hospodka M, Blab R, Grothe H (2014) Influence of asphaltene content on mechanical bitumen behavior: experimental investigation and micromechanical modeling. Mater Struct 1–14. doi: 10.1617/s11527-014-0383-7
  36. 36.
    Eberhardsteiner L, Füssl J, Hofko B, Handle F, Hospodka M, Blab R, Grothe H (2015) Towards a microstructural model of bitumen aging behavior. Int J Pavement Eng. doi: 10.1080/10298436.2014.993192
  37. 37.
    CEN (2007) EN 1426: bitumen and bituminous binders—determination of needle penetration. CEN, BrusselsGoogle Scholar
  38. 38.
    CEN (2007) EN 1427: bitumen and bituminous binders—determination of the softening point—ring and ball method. CEN, BrusselsGoogle Scholar
  39. 39.
    CEN (2005) EN 14770: bitumen and bituminous binders—determination of complex shear modulus and phase angle—dynamic shear rheometer (DSR). CEN, BrusselsGoogle Scholar
  40. 40.
    CEN (2005) EN 14771: bitumen and bituminous binders—determination of the flexural creep stiffness—bending beam rheometer (BBR). CEN, BrusselsGoogle Scholar
  41. 41.
    Eaton PW (2010) Atomic force microscopy. Oxford University Press, OxfordCrossRefGoogle Scholar
  42. 42.
    Garcıá R, Pérez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6–8):197–301CrossRefGoogle Scholar
  43. 43.
    Nečas D, Klapetek P (2011) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10(1):181–188Google Scholar
  44. 44.
    Masson JF, Leblond V, Margeson J (2006) Bitumen morphologies by phase-detection atomic force microscopy. J Microsc 221(1):17–29MathSciNetCrossRefGoogle Scholar
  45. 45.
    Nahar S et al (2013) First observation of blending-zone morphology at interface of reclaimed asphalt binder and virgin bitumen. Transp Res Rec 2370(1):1–9MathSciNetCrossRefGoogle Scholar
  46. 46.
    Nahar SN et al. (2014) Turning back time: rheological and microstructural assessment of rejuvenated bitumen. TRB 93rd annual meeting compendium of papers, 1–17Google Scholar
  47. 47.
    Nahar SN et al (2013) Temperature and thermal history dependence of the microstructure in bituminous materials. Eur Polym J 49(8):1964–1974CrossRefGoogle Scholar
  48. 48.
    Schmets A et al (2010) On the existence of wax-induced phase separation in bitumen. Int J Pavement Eng 11(6):555–563CrossRefGoogle Scholar
  49. 49.
    Pauli AT et al (2001) Atomic force microscopy investigation of SHRP asphalts. Abstr Pap Am Chem Soc 221:U220Google Scholar
  50. 50.
    Stangl K, Jäger A, Lackner R (2006) Microstructure-based identification of bitumen performance. Road Mater Pavement Des 7(sup1):111–142CrossRefGoogle Scholar
  51. 51.
    Merino-Garcia D et al (2010) Petrophase 2009 panel discussion on standardization of petroleum fractions. Energy Fuels 24(4):2175–2177CrossRefGoogle Scholar

Copyright information

© RILEM 2015

Authors and Affiliations

  • B. Hofko
    • 1
    Email author
  • L. Eberhardsteiner
    • 1
  • J. Füssl
    • 1
  • H. Grothe
    • 1
  • F. Handle
    • 1
  • M. Hospodka
    • 1
  • D. Grossegger
    • 1
  • S. N. Nahar
    • 2
  • A. J. M. Schmets
    • 2
  • A. Scarpas
    • 2
  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.Section of Road and Railway Engineering, Faculty of Civil Engineering & GeosciencesDelft University of TechnologyDelftThe Netherlands

Personalised recommendations