Materials and Structures

, Volume 48, Issue 11, pp 3795–3809 | Cite as

Non-destructive and on site method to assess the air-permeability in dimension stones and its relationship with other transport-related properties

  • B. Sena da Fonseca
  • A. S. Castela
  • R. G. Duarte
  • R. Neves
  • M. F. Montemor
Original Article

Abstract

This work studies the suitability of the “Torrent” air-permeability test method for testing dimension stones. To test its feasibility, measurements were performed on stone slabs with porosities in the range of 0.2–17.2 %. Statistically, accurate and reliable measurements were achieved on stones with open porosities above 2 %. Close relations were found between air-permeability coefficient and other transport-related properties. Therefore, the air-permeability coefficient can be a parameter, on its own, providing useful information about the stone susceptibility to decay. Moreover, a graded classification is suggested with the purpose of providing information for a proper application of stones in constructions.

Keywords

Dimension stone Air-permeability Torrent Porosity Water absorption Decay 

Notes

Acknowledgments

The authors express their gratitude to Dr. Pedro Cabral from DIMPOMAR, LDA and Eng. Thomas Kleba from MAGRATEX, LDA who generously provided the stones used in this work.

References

  1. 1.
    Andriani G, Walsh N (2003) Fabric, porosity and water permeability of calcarenites from Apulia (SE Italy) used as building and ornamental stone. Bull Eng Geol Environ 62(1):77–84. doi:10.1007/s10064-002-0174-1 Google Scholar
  2. 2.
    Angeli M, Benavente D, Bigas J-P, Menéndez B, Hébert R, David C (2008) Modification of the porous network by salt crystallization in experimentally weathered sedimentary stones. Mater Struct 41(6):1091–1108. doi:10.1617/s11527-007-9308-z CrossRefGoogle Scholar
  3. 3.
    Barros RS, Oliveira DV, Varum H, Alves CAS, Camões A (2014) Experimental characterization of physical and mechanical properties of schist from Portugal. Constr Build Mater 50:617–630. doi:10.1016/j.conbuildmat.2013.10.008 CrossRefGoogle Scholar
  4. 4.
    Bueno V (2004) Estudio de Factibilidad de un Nuevo Ensayo de Permeabilidad en Rocas. Univ. del Zulia, Maracaibo, p 88Google Scholar
  5. 5.
    Cai J, Yu B (2011) A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp Porous Media 89(2):251–263. doi:10.1007/s11242-011-9767-0 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Castela AS, Sena da Fonseca B, Duarte RG, Neves R, Montemor MF (2014) Influence of unsupported concrete media in corrosion assessment for steel reinforcing concrete by electrochemical impedance spectroscopy. Electrochim Acta 124:52–60. doi:10.1016/j.electacta.2013.11.157 CrossRefGoogle Scholar
  7. 7.
    CEN (2000) Natural stone test methods: determination of water absorption coefficient by capillary. EN 1925Google Scholar
  8. 8.
    CEN (2001) Natural stone test methods: determination of real density and apparent density, and of total and open porosity. EN 1936Google Scholar
  9. 9.
    CEN (2005) Natural stone test methods: determination of water absorption at atmospheric pressure. EN 13755Google Scholar
  10. 10.
    CEN (2010) Conservation of cultural property: determination of water vapour permeability. EN 15803Google Scholar
  11. 11.
    CEN (2013) Conservation of cultural property: determination of drying properties. EN 16322Google Scholar
  12. 12.
    Commission 25-PEM R (2006) Water absorption tube test. Test method II.4Google Scholar
  13. 13.
    Denariè E, Jacobs F, Leeman A, Teruzzi T, Torrent R (2011) Specification and site control of the permeability of the cover concrete: the Swiss approach. Paper presented at the international RILEM conference on advances in construction materials through science and engineering, pp 478–485Google Scholar
  14. 14.
    Figueiredo C, Folha R, Maurício A, Alves C, Aires-Barros L (2010) Pore structure and durability of Portuguese limestones: a case study. Limestone in the building environment: present day challenges for the preservation of the past, vol 331. Geological Society, London, pp 157–169Google Scholar
  15. 15.
    Franzen C, Mirwald PW (2004) Moisture content of natural stone: static and dynamic equilibrium with atmospheric humidity. Environ Geol 46(3–4):391–401. doi:10.1007/s00254-004-1040-1 Google Scholar
  16. 16.
    García O, Malaga K (2012) Definition of the procedure to determine the suitability and durability of an anti-graffiti product for application on cultural heritage porous materials. J Cult Herit 13(1):77–82. doi:10.1016/j.culher.2011.07.004 CrossRefGoogle Scholar
  17. 17.
    Hall C, Hamilton A (2013) Porosity–density relations in stone and brick materials. Mater Struct 1–7. doi:10.1617/s11527-013-0231-1
  18. 18.
    Hall C, Hoff W (2002) Water transport in brick, stone, and concrete. Taylor & Francis, Oxon, p 318Google Scholar
  19. 19.
    Hall C, Hoff WD, Nixon MR (1984) Water movement in porous building materials—VI. Evaporation and drying in brick and block materials. Build Environ 19(1):13–20. doi:10.1016/0360-1323(84)90009-X CrossRefGoogle Scholar
  20. 20.
    Heigold PC, Gilkeson RH, Castwright K, Reed PC (1980) Aquifer transmissivity from surficial electrical measurements. Groundwater 17:330–345Google Scholar
  21. 21.
    Hendrickx R (2013) Using the Karsten tube to estimate water transport parameters of porous building materials. Mater Struct 46(8):1309–1320. doi:10.1617/s11527-012-9975-2 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hoigard KR (2000) Dimension stone cladding: design, construction, evaluation, and repair, vol 1394. ASTM, West Conshohocken, p 184Google Scholar
  23. 23.
    Hollander M, Wolfe D (1999) Nonparametric statistical methods. Wiley, New York, p 816Google Scholar
  24. 24.
    Karaca Z (2010) Water absorption and dehydration of natural stones versus time. Constr Build Mater 24(5):786–790. doi:10.1016/j.conbuildmat.2009.10.029 CrossRefGoogle Scholar
  25. 25.
    Kourkoulis SK, Ganniari-Papageorgiou E (2010) Experimental study of the size- and shape-effects of natural building stones. Constr Build Mater 24(5):803–810. doi:10.1016/j.conbuildmat.2009.10.027 CrossRefGoogle Scholar
  26. 26.
    Kucharczyková B, Misák P, Vymazal T (2010) The Air-permeability measurement by torrent permeability tester. In: Proceedings of the 10th international conference on modern building materials, structures and techniques, Vilnius, 2010, pp 162–166Google Scholar
  27. 27.
    La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for cultural heritage. Prog Org Coat 74(1):186–191. doi:10.1016/j.porgcoat.2011.12.008 CrossRefGoogle Scholar
  28. 28.
    Lima OAL, Niwas S (2000) Estimation of hydraulic parameters of shaly sandstone aquifers from geoelectrical measurements. J Hydrol 235(1–2):12–26. doi:10.1016/S0022-1694(00)00256-0 CrossRefGoogle Scholar
  29. 29.
    Lombillo I, Thomas C, Villegas L, Fernández-Álvarez JP, Norambuena-Contreras J (2013) Mechanical characterization of rubble stone masonry walls using non and minor destructive tests. Constr Build Mater 43:266–277. doi:10.1016/j.conbuildmat.2013.02.007 CrossRefGoogle Scholar
  30. 30.
    Lopez-Arce P, Doehne E, Greenshields J, Benavente D, Young D (2009) Treatment of rising damp and salt decay: the historic masonry buildings of Adelaide, South Australia. Mater Struct 42(6):827–848. doi:10.1617/s11527-008-9427-1 CrossRefGoogle Scholar
  31. 31.
    Martinho E, Dionísio A, Almeida F, Mendes M, Grangeia C (2014) Integrated geophysical approach for stone decay diagnosis in cultural heritage. Constr Build Mater 52:345–352. doi:10.1016/j.conbuildmat.2013.11.047 CrossRefGoogle Scholar
  32. 32.
    MAS (2013) [www.m-a-s.com.ar/]. Accessed April 2013
  33. 33.
    Miller AZ, Leal N, Liaz L, Regerio-Candelera MA, Silva RJC, Dionísio A, Macedo MF, Saiz-Jimenez C (2010) Primary bioreceptivity of limestones used in Southern European monuments. Limestone in the building environment: present day challenges for the preservation of the past, vol 331. Geological Society, London, pp 79–92Google Scholar
  34. 34.
    Neithalath N, Sumanasooriya MS, Deo O (2010) Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Mater Charact 61(8):802–813. doi:10.1016/j.matchar.2010.05.004 CrossRefGoogle Scholar
  35. 35.
    Nelson P (1994) Permeability–porosity relationships in sedimentary rocks. Log Analyst 35:38–62Google Scholar
  36. 36.
    Neves R (2012) A permeabilidade ao ar e a carbonatação do betão nas estruturas. ULisboa—IST, Lisboa, p 416Google Scholar
  37. 37.
    Neves R, Branco F, Brito J (2012) About the statistical interpretation of air permeability assessment results. Mater Struct 45(4):529–539. doi:10.1617/s11527-011-9780-3 CrossRefGoogle Scholar
  38. 38.
    Nicholson DT (2001) Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surf Proc Landf 26(8):819–838. doi:10.1002/esp.228 CrossRefGoogle Scholar
  39. 39.
    Nikitsin VI, Backiel-Brzozowska B (2013) Determination of capillary tortuosity coefficient in calculations of moisture transfer in building materials. Int J Heat Mass Transf 56(1–2):30–34. doi:10.1016/j.ijheatmasstransfer.2012.09.021 CrossRefGoogle Scholar
  40. 40.
    Pinna D, Salvadori B, Porcinai S (2011) Evaluation of the application conditions of artificial protection treatments on salt-laden limestones and marble. Constr Build Mater 25(5):2723–2732. doi:10.1016/j.conbuildmat.2010.12.023 CrossRefGoogle Scholar
  41. 41.
    Pinto A, Alho A, Moura A, Henriques A, Carvalho C, Ramos J, Almeira N, Mestre V (2006) Manual da pedra natural para arquitectura. Direcção-Geral de Geologia e Energia, p 194Google Scholar
  42. 42.
    Přikryl R, Smith BJ (2007) Building stone decay: from diagnosis to conservation. Geological Society of London, London, p 330Google Scholar
  43. 43.
    Quagliarini E, Bondioli F, Goffredo GB, Cordoni C, Munafò P (2012) Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Constr Build Mater 37:51–57. doi:10.1016/j.conbuildmat.2012.07.006 CrossRefGoogle Scholar
  44. 44.
    Quagliarini E, Bondioli F, Goffredo GB, Licciulli A, Munafò P (2013) Self-cleaning materials on architectural heritage: compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces. J Cult Herit 14(1):1–7. doi:10.1016/j.culher.2012.02.006 CrossRefGoogle Scholar
  45. 45.
    Reyes J, Corvo F, Espinosa-Morales Y, Dzul B, Perez T, Valdes C, Aguilar D, Quintana P (2011) Influence of air pollution on degradation of historic buildings at the urban tropical atmosphere of San Francisco de Campeche City, México. In: Monitoring, control and effects of air pollution. InTech, pp 201–226Google Scholar
  46. 46.
    Romer M (2005) Effect of moisture and concrete composition on the torrent permeability measurement. Mater Struct 38(5):541–547. doi:10.1007/bf02479545 CrossRefGoogle Scholar
  47. 47.
    Sarıışık G, Sarıışık A, Gökay MK (2013) Investigation the glazability of dimension andesites with glaze coating materials containing boron minerals in construction sector. Mater Struct 46(9):1507–1517. doi:10.1617/s11527-012-9992-1 CrossRefGoogle Scholar
  48. 48.
    Sena da Fonseca B, Vilão A, Galhano C, Simão JAR (2014) Reusing coffee waste in manufacture of ceramics for construction. Adv Appl Ceram 113(3):159–166. doi:10.1179/1743676113y.0000000131 CrossRefGoogle Scholar
  49. 49.
    Shapiro S, Wilk M (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3-4):591–611MATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    SIA (2003) Construction en béton—Spécifications complémentaires, Annexe E: Perméabilité à l’air dans les Structures. SIA 262/1Google Scholar
  51. 51.
    Siegesmund S, Dürrast H (2011) Physical and mechanical properties of rocks. Stone in architecture, 4th edn. Springer, Berlin, pp 97–225CrossRefGoogle Scholar
  52. 52.
    Siegesmund S, Grimm W, Durrast H, Ruedrich J (2010) Limestones in Germany used as building stones: an overview. Limestone in the building environment: present day challenges for the preservation of the past. Geological Society, London, pp 37–59Google Scholar
  53. 53.
    Siegesmund S, Török Á (2011) Building stones. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Springer, Berlin, Heidelberg, pp 11–95. doi:10.1007/978-3-642-14475-2_2
  54. 54.
    Silva ZSG, Simão JAR (2009) The role of salt fog on alteration of dimension stone. Constr Build Mater 23(11):3321–3327. doi:10.1016/j.conbuildmat.2009.06.044 CrossRefGoogle Scholar
  55. 55.
    Torrent R (1992) A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site. Mater Struct 25(6):358–365. doi:10.1007/bf02472595 CrossRefGoogle Scholar
  56. 56.
    Torrent R (2013) Non-destructive site air-permeability test—relation with other transport test methods. Materials Advanced Services Ltd, Buenos Aires, www.m-a-s.com.ar. Nov 2013
  57. 57.
    Torrent R, Basheer M, Gonçalves AF (2007) Non-destructive methods to measure gas-permeability (Chapter 3). TC 189-NEC: State-of-the-Art Report. RILEM, 35–66Google Scholar
  58. 58.
    Tournier B, Jeannette D, Destrigneville C (2000) Stone drying: an approach of the effective evaporating surface area In: Proceedings of 9th international congress on deterioration and conservation of stone, Venice, 2000, pp 629–635Google Scholar
  59. 59.
    Urdan T (2005) Statistics in plain english—second edition. Lawrence Erlbaum Associates, Mahwah, p 184Google Scholar
  60. 60.
    Vandevoorde D, Cnudde V, Dewanckele J, Brabant L, de Bouw M, Meynen V, Verhaeven E (2013) Validation of in situ applicable measuring techniques for analysis of the water adsorption by stone. Procedia Chem 8:317–327. doi:10.1016/j.proche.2013.03.039 CrossRefGoogle Scholar
  61. 61.
    Vázquez P, Alonso FJ, Carrizo L, Molina E, Cultrone G, Blanco M, Zamora I (2013) Evaluation of the petrophysical properties of sedimentary building stones in order to establish quality criteria. Constr Build Mater 41:868–878. doi:10.1016/j.conbuildmat.2012.12.026 CrossRefGoogle Scholar
  62. 62.
    Weibel R, Kristensen L, Olivarius M, Hjuler ML, Mathiesen A, Nielsen LH (2012) Investigating deviations from overall porosity-permeability trends. Paper presented at the proceedings 36th workshop on geothermal reservoir engineering, Stanford University, California, p 16Google Scholar

Copyright information

© RILEM 2014

Authors and Affiliations

  • B. Sena da Fonseca
    • 1
  • A. S. Castela
    • 1
    • 2
  • R. G. Duarte
    • 1
    • 2
  • R. Neves
    • 2
  • M. F. Montemor
    • 1
  1. 1.ICEMS-DEQ, Instituto Superior TécnicoULisboaLisbonPortugal
  2. 2.Instituto Politécnico de SetúbalESTBarreiroBarreiroPortugal

Personalised recommendations