Materials and Structures

, Volume 48, Issue 8, pp 2685–2696 | Cite as

A new calcium sulfate-based plaster composed of composite particles

  • Aranda Berenger
  • Guillou OlivierEmail author
  • Christophe Lanos
  • Carole Daiguebonne
  • Stéphane Freslon
  • Christophe Tessier
  • Mélissa Laurans
  • Christophe Baux
  • Hélène Greffet
Original Article


Flash-calcination of gypsum by a new patented process produces a particular type of plaster. This particular plaster has been characterized and compared to a classical β-plaster. It appears as a stable mixture of hemihydrate and of γ-anhydrite. Because of its composition, this new plaster presents several stable states depending on the storage conditions. A study of its reactivity followed by XRD and thermal analyses has been realized. It reveals that even after several months of exposition under moist atmosphere, γ-anhydrite is still present in the sample. A model of composite particle of plaster is proposed for explaining this unusual behavior.


γ-Anhydrite Hemihydrate Grain model Thermal characterization 


  1. 1.
    World Commission on Environmental and Development (1987) Our Common Future, report of the Brundtland Commission, United Nations. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Meadows D, Meadows D, Randers J (1972) The limits to growth. Universe Books, New YorkGoogle Scholar
  3. 3.
    United Nations, Earth Summit 2002 (2002) Johannesburg declaration on sustainable development, Johannesburg, September 2002Google Scholar
  4. 4.
    United Nations (2009) Copenhagen Accords, Climate Change Conference, Copenhague, Décembre 2009Google Scholar
  5. 5.
    Degirmenci N (2008) The using of waste phosphogypsum and natural gypsum in adobe stabilization. Constr Build Mater 22(6):1220–1224CrossRefGoogle Scholar
  6. 6.
    Damtoft JS, Lukasik J, Herfort D, Sorrentino D, Gartner EM (2008) Sustainable development and climate change initiatives. Cem Concr Res 38(2):115–127CrossRefGoogle Scholar
  7. 7.
    Bourgier V (2007) Influences des ions monohydrogénophosphates et fluoro-phospates sur les propriétés des phosphogypses et la réactivité des phosphoplâtres, Ph-D Thesis, 30th January 2007, Saint-EtienneGoogle Scholar
  8. 8.
    Roskill (2009) Gypsum and anhydrite: global industry markets and outlook, 10th edn. London, Roskill ed., ISBN: 9780862145507Google Scholar
  9. 9.
    Baux C (2008) Process for the industrial manufacture of compositions based on anhydrous calcium sulfate in the β-anhydrite III’ form, and corresponding compositions and binders, patent registered by KandCo SARL, FR2933688 (A1)Google Scholar
  10. 10.
    Koninklijke Philips Electronics NV, X’PertHighscore, Philips Analytical BV (2001) Almelo, The NetherlandsGoogle Scholar
  11. 11.
    McMurdie HF, Morris MC, Evans EH, Paretzkin B, Wong-Ng W, Hubbard CR (1986) Standard X-ray diffraction powder patterns from JCPDS Research Associateship. Powder Diffr 1(3):265–275CrossRefGoogle Scholar
  12. 12.
    Roisnel T, Rodriguez-Carjaval J (2001) WinPLOTR: a windows tool for powder diffraction pattern analysis. Mater Sci Forum 378–381:118–123CrossRefGoogle Scholar
  13. 13.
    Boultif A, Louër D (1991) Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J Appl Crystallogr 24:987–993CrossRefGoogle Scholar
  14. 14.
    Shirley R (2002) The Crysfire 2002 system for automatic powder indexing: user’s manual. Lattice Press ed, GuildfordGoogle Scholar
  15. 15.
    Calvez G (2009) Synthèse et étude des applications potentielles de matériaux moléculaires à base d’entités hexanucléaires de terres rares, Ph-D Thesis, 27th Novembre 2009, RennesGoogle Scholar
  16. 16.
    Pedersen BF, Semmingsen D, Semmingsen D (1982) Neutron diffraction refinement of the structure of gypsum, CaSO4·2H2O. ActaCrystallographica Sect B 38:1074–1077CrossRefGoogle Scholar
  17. 17.
    Bezou C, Mutin JC, Nonat A, Christensen AN, Lehmann MS (1995) Investigation of the crystal structure of γ-CaSO4, CaSO4·0.5H2O and CaSO4·0,6H2O by powder diffraction methods. J Solid State Chem 117:165–176CrossRefGoogle Scholar
  18. 18.
    Ballirano P, Maras A, Meloni S, Caminiti R (2001) The monoclinic I2 structure of bassanite, calcium sulfate hemihydrate (CaSO4·0.5H2O). Eur J Miner 13(5):985–993CrossRefGoogle Scholar
  19. 19.
    Christensen AN, Olesen M, Cerenius Y, Jensen TR (2008) Formation and transformation of five different phases in the CaSO4–H2O system: crystal structure of the subhydrate β-CaSO4·0.5H2O and soluble anhydrite CaSO4. Chem Mater 20(6):2124–2132CrossRefGoogle Scholar
  20. 20.
    Flörke OW (1952) Kristallographische und rontgenometrischeUntersuchungen im System CaSO4–CaSO4·2H2O. Neues Jahrbuch für Mineralogie, Abhandlungen 84:189–240Google Scholar
  21. 21.
    Ballirano P, Melis E (2009) The thermal behaviour of γ-CaSO4. Phys Chem Miner 36:319–327CrossRefGoogle Scholar
  22. 22.
    Kirfel A, Will G (1980) Charge density in anhydrite, CaSO4, from X-ray and neutron diffraction measurements. Acta Crystallogr Sect B 36:2881–2890CrossRefGoogle Scholar
  23. 23.
    Gibson CS, Holt SJ (1933) Hydrates of calcium sulphate. J Chem Soc 638–640Google Scholar
  24. 24.
    Kelley KK, Southard JC, Anderson CT (1941) Thermodynamic properties of gypsum and its dehydration products, United States Bureau of Mines Technical Paper, vol. 625Google Scholar
  25. 25.
    Lehmann H, Rieke K (1973) Les anhydrites solubles du sulfate de calcium. Tonind. ZTg. Keram. Rundsch. 97(6):157–159Google Scholar
  26. 26.
    Isa K, Oruno H (1982) Thermal decomposition of calcium sulfate dehydrate under self-generated atmosphere. Bull Chem Soc Jpn 55:3733–3737CrossRefzbMATHGoogle Scholar
  27. 27.
    Rojo A, Mélinge Y, Guillou O, Freslon S, Gloriant T (2012) Champs de température surfaciques en face froide de panneaux plans à base de gypse soumis à une élévation de température normalisée de type incendie, Proceedings of the symposium of the Société Française de ThermiqueGoogle Scholar
  28. 28.
    Borrachero MV, Payá J, Bonilla M, Monzó J (2008) The use of thermogravimetric analysis technique for the characterization of construction materials, the gypsum case. J Therm Anal Calorim 91(2):503–509CrossRefGoogle Scholar
  29. 29.
    Mélinge Y, Nguyen KS, Daiguebonne C, Guillou O, Freslon S, Lanos C (2011) Mono-dimensional-time dehydration kinetic study of plaster boards under standard fire conditions (ISO 834). Thermo-chemical analysis. J Fire Sci 29(4):299–316CrossRefGoogle Scholar
  30. 30.
    Rojo A, Mélinge Y, Guillou O (2013) Internal structure evolution kinetic of gypsum board submitted to standard fire. J Fire Sci 31(5):395–409CrossRefGoogle Scholar
  31. 31.
    Ramachandran VS, Paroli RM, Beaudoin JJ, Delgado AH (2002) Handbook of thermal analysis of constructions materials, chapter 11: gypsum and gypsum products. Norwich, William Andrews Publishing, LCC, 2002, ISBN: 0815514875, p. 449–490Google Scholar
  32. 32.
    Seufert S, Hesse F, Goetz-Neunkoeffer F, Neubauer J (2009) Quantitative determination of anhydrite III from dehydrated gypsum by XRD. Cem Concr Res 39(10):936–941CrossRefGoogle Scholar
  33. 33.
    Wirsching F (2000) Calcium sulfate, Ullmann’s encyclopedia of industrial chemistry, vol. A4. Wiley, New York ISBN: 9783527306732, p. 555–585Google Scholar
  34. 34.
    Berthold C, Presser V, Huber N, Nickel KG (2011) 1 + 1 = 3: Coupling µ-XRD2 and DTA. New insights in temperature-dependent phase transitions. The gypsum–bassanite–anhydrite system as an exemple. J Therm Anal Calorim 103(3):917–923CrossRefGoogle Scholar
  35. 35.
    Sipple E-M, Bracconi P, Dufour P, Mutin J-C (2001) Electronic microdiffraction study of structural modifications resulting from the dehydration of gypsum. Prediction of the microstructure of resulting pseudomorphs. Solid State Ionics 141–142:455–461CrossRefGoogle Scholar
  36. 36.
    Sipple E-M (1999) Réarrangements structuraux et modifications microstructurales associés aux transformations des phases dans le système CaSO4 (s)–H2O(g), Ph-D Thesis, 10th May 1999, DijonGoogle Scholar
  37. 37.
    Abriel W, Reisdorf K, Pannetier J (1990) Dehydration reactions of gypsum: a neutron and X-ray diffraction study. J Solid State Chem 85(1):23–30CrossRefGoogle Scholar
  38. 38.
    Craig DA (2003) Atomistic modelling of the hydration of CaSO4. J Solid State Chem 174(1):141–151CrossRefGoogle Scholar
  39. 39.
    Razouk RI, Salem ASh, Mikhail RSH (1960) The sorption of water vapor on dehydrated gypsum. J Phys Chem 64(10):1350–1355CrossRefGoogle Scholar
  40. 40.
    Ballirano P, Melis E (2009) Thermal behavior and kinetics of dehydration in air of bassanite, calcium sulphate hemihydrate (CaSO4·0.5H2O), from X-ray powder diffraction. Eur J Miner 21(5):985–993CrossRefGoogle Scholar
  41. 41.
    Reinhardt B, Evrard R, Duhamel P, Cordonnier A (2000) Flash drying, Ciments, Bétons, Plâtres Chaux, INIST-CNRS, ISBN 03976006X 27(1):40–46Google Scholar

Copyright information

© RILEM 2014

Authors and Affiliations

  • Aranda Berenger
    • 1
    • 2
    • 4
  • Guillou Olivier
    • 1
    • 2
    Email author
  • Christophe Lanos
    • 1
    • 3
  • Carole Daiguebonne
    • 1
    • 2
  • Stéphane Freslon
    • 1
    • 2
  • Christophe Tessier
    • 4
  • Mélissa Laurans
    • 1
    • 4
  • Christophe Baux
    • 1
    • 3
  • Hélène Greffet
    • 1
    • 2
  1. 1.Université européenne de BretagneRennesFrance
  2. 2.Institut des Sciences Chimiques de RennesINSA, UMR 6226RennesFrance
  3. 3.Laboratoire de Génie Civil et de Génie MécaniqueIUT de Rennes, EA 3913RennesFrance
  4. 4.I-KR SASRennesFrance

Personalised recommendations