Materials and Structures

, Volume 47, Issue 1–2, pp 11–25 | Cite as

Geopolymers and other alkali activated materials: why, how, and what?

  • John L. ProvisEmail author
Original Article


This paper presents a review of alkali-activation technology, moving from the atomic scale and chemical reaction path modelling, towards macroscopic observables such as strength and durability of alkali-activated concretes. These properties and length scales are intrinsically interlinked, and so the chemistry of both low-calcium (‘geopolymer’) and high-calcium (blast furnace slag-derived) alkali-activated binders can be used as a starting point from which certain engineering properties may be discussed and explained. These types of materials differ in chemistry, binder properties, chemical structure and microstructure, and this leads to the specific material properties of each type of binder. The secondary binder products formed during alkali-activation (zeolites in low-Ca systems, mostly layered double hydroxides in alkali-activated slags) are of significant importance in determining the final properties of the materials, particularly in the context of durability. The production of highly durable concretes must remain the fundamental aim of research and development in the area of alkali-activation. However, to enable the term ‘highly durable’ to be defined in a satisfactory way, the underlying mechanisms of degradation—which are not always the same for alkali-activated binders as for Portland cement-based binders, and cannot always be tested in precisely the same ways—need to be further analysed and understood. The process of reviewing a topic such as this will inevitably raise just as many questions as answers, and it is the intention of this paper to present both, in appropriate context.


Alkali-activation Geopolymer Chemical reaction modelling Binder chemistry Durability 



The work described here has been made possible through collaboration with many people over a number of years. A good share of the credit for the RILEM Robert L’Hermite Medal certainly belongs to the colleagues and students with whom I have worked over the past decade, and so I thank them for their input and hard work which has enabled me to write this review. First and foremost, I owe a major debt to Professor Jannie van Deventer, who has been my mentor, supervisor and longstanding collaborator (from both academic and industrial perspectives), and has given his unstinting support in every aspect of my career. My students and postdocs, I hope you have been able to learn from me some fraction of the amount I have learned from you, and I hope that my descriptions of your work have done justice to it. My collaborators and colleagues, in Melbourne, Sheffield, and all over the world (including RILEM TCs 224-AAM, 238-SCM, and 247-DTA), who have shared time, expertise, ideas and data with me, this has always been a pleasure. Among these people, particular thanks are due to Dr Peter Duxson, with whom discussions have always been thought-provoking, productive and fun, and have led (directly or indirectly) to much of the science described in this review. To those who have given me opportunities—and particularly the chance to take on a Chair at the University of Sheffield—I am truly grateful. To the agencies who have provided financial support, particularly the Australian Research Council through numerous projects, and also Zeobond as a key industry partner in much of my work, I hope that I have made good use of the money! Finally, and most importantly, to the person who proofreads and reality-checks all of my papers, my wife, collaborator, inspiration and partner in everything I do, Dr Susan A. Bernal—it’s all for you.


  1. 1.
    Provis JL, van Deventer JSJ, eds (2013) Alkali-activated materials: State-of-the-Art Report, RILEM TC 224-AAM. Springer/RILEM, BerlinGoogle Scholar
  2. 2.
    Duxson P, Provis JL (2008) Designing precursors for geopolymer cements. J Am Ceram Soc 91(12):3864–3869CrossRefGoogle Scholar
  3. 3.
    Provis JL (2009) Activating solution chemistry for geopolymers. In: Provis JL, van Deventer JSJ (eds) Geopolymers: structure, processing, properties and industrial applications. Woodhead, Cambridge, pp 50–71CrossRefGoogle Scholar
  4. 4.
    Davidovits J (2008) Geopolymer chemistry and applications. Institut Géopolymère, Saint-QuentinGoogle Scholar
  5. 5.
    Kühl H (1908) Slag cement and process of making the same. US Patent 900,939Google Scholar
  6. 6.
    Purdon AO (1940) The action of alkalis on blast-furnace slag. J Soc Chem Ind 59:191–202CrossRefGoogle Scholar
  7. 7.
    Vanooteghem M (2011) Duurzaamheid van beton met alkali-geactiveerde slak uit de jaren 50—Het Purdocement. M.Ing. Thesis, Universiteit GentGoogle Scholar
  8. 8.
    Glukhovsky VD (1959) Gruntosilikaty (soil silicates). Gosstroyizdat, KievGoogle Scholar
  9. 9.
    Krivenko PV (2002) Alkaline cements: from research to application. In: Lukey GC (ed) Geopolymers 2002: turn potential into profit, CD-ROM proceedings, Siloxo Pty. Ltd., Melbourne, AustraliaGoogle Scholar
  10. 10.
    Husbands TB, Malone PG, Wakeley LD (1994) Performance of concretes proportioned with Pyrament blended cement, U.S. Army Corps of Engineers Construction Productivity Advancement Research Program, Report CPAR-SL-94-2, Vicksburg, MSGoogle Scholar
  11. 11.
    Shi C, Krivenko PV, Roy DM (2006) Alkali-activated cements and concretes. Taylor & Francis, AbingdonCrossRefGoogle Scholar
  12. 12.
    van Deventer JSJ, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29:89–104CrossRefGoogle Scholar
  13. 13.
    Habert G, Roussel N (2011) A method for a fair allocation of the environmental impacts of supplementary cementitious materials. In: Palomo A (ed) XIII international congress on the chemistry of cement, CD-ROM, Madrid, SpainGoogle Scholar
  14. 14.
    von Weizsäcker E, Hargroves K, Smith MH, Desha C, Stasinopoulos P (2009) Factor five: transforming the global economy through 80% improvements in resource productivity. Earthscan, LondonGoogle Scholar
  15. 15.
    McGuire EM, Provis JL, Duxson P, Crawford R (2011) Geopolymer concrete: is there an alternative and viable technology in the concrete sector which reduces carbon emissions? In: Concrete 2011, CD-ROM proceedings, Concrete Institute of Australia, Perth, AustraliaGoogle Scholar
  16. 16.
    McLellan BC, Williams RP, Lay J, van Riessen A, Corder GD (2011) Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J Clean Prod 19(9–10):1080–1090CrossRefGoogle Scholar
  17. 17.
    Habert G, d’Espinose de Lacaillerie JB, Roussel N (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J Clean Prod 19(11):1229–1238CrossRefGoogle Scholar
  18. 18.
    Duxson P, Provis JL, Lukey GC, van Deventer JSJ (2007) The role of inorganic polymer technology in the development of ‘Green concrete’. Cem Concr Res 37(12):1590–1597CrossRefGoogle Scholar
  19. 19.
    Duxson P, Provis JL, Lukey GC, Separovic F, van Deventer JSJ (2005) 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir 21(7):3028–3036CrossRefGoogle Scholar
  20. 20.
    Shi C (2003) Corrosion resistance of alkali-activated slag cement. Adv Cem Res 15(2):77–81CrossRefGoogle Scholar
  21. 21.
    Shi C, Stegemann JA (2000) Acid corrosion resistance of different cementing materials. Cem Concr Res 30(5):803–808CrossRefGoogle Scholar
  22. 22.
    Bernal SA, Rodríguez ED, Mejía de Gutierrez R, Gordillo M, Provis JL (2011) Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J Mater Sci 46(16):5477–5486CrossRefGoogle Scholar
  23. 23.
    Hooton RD (2008) Bridging the gap between research and standards. Cem Concr Res 38(2):247–258CrossRefGoogle Scholar
  24. 24.
    Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933CrossRefGoogle Scholar
  25. 25.
    Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics 2. Reaction kinetic modelling. Chem Eng Sci 62(9):2318–2329CrossRefGoogle Scholar
  26. 26.
    Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics: 1. In situ energy dispersive X-ray diffractometry. Chem Eng Sci 62(9):2309–2317CrossRefGoogle Scholar
  27. 27.
    Provis JL, Walls PA, van Deventer JSJ (2008) Geopolymerisation kinetics. 3. Effects of Cs and Sr salts. Chem Eng Sci 63(18):4480–4489CrossRefGoogle Scholar
  28. 28.
    Faimon J (1996) Oscillatory silicon and aluminum aqueous concentrations during experimental aluminosilicate weathering. Geochim Cosmochim Acta 60(15):2901–2907CrossRefGoogle Scholar
  29. 29.
    Provis JL, Duxson P, Lukey GC, Separovic F, Kriven WM, van Deventer JSJ (2005) Modeling speciation in highly concentrated alkaline silicate solutions. Ind Eng Chem Res 44(23):8899–8908CrossRefGoogle Scholar
  30. 30.
    Knight CTG, Balec RJ, Kinrade SD (2007) The structure of silicate anions in aqueous alkaline solutions. Angew Chem Int Ed 46:8148–8152CrossRefGoogle Scholar
  31. 31.
    Lothenbach B, Gruskovnjak A (2007) Hydration of alkali-activated slag: thermodynamic modelling. Adv Cem Res 19(2):81–92CrossRefGoogle Scholar
  32. 32.
    Chen W, Brouwers H (2007) The hydration of slag, part 1: reaction models for alkali-activated slag. J Mater Sci 42(2):428–443CrossRefGoogle Scholar
  33. 33.
    Richardson IG (2004) Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem Concr Res 34(9):1733–1777CrossRefGoogle Scholar
  34. 34.
    Myers RJ, Bernal SA, San Nicolas R, Provis JL (2013) Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the crosslinked substituted tobermorite model. Langmuir 29(17):5294–5306CrossRefGoogle Scholar
  35. 35.
    White CE, Provis JL, Kearley GJ, Riley DP, van Deventer JSJ (2011) Density functional modelling of silicate and aluminosilicate dimerisation solution chemistry. Dalton Trans 40(6):1348–1355CrossRefGoogle Scholar
  36. 36.
    White CE, Provis JL, Proffen T, van Deventer JSJ (2011) Quantitative mechanistic modeling of silica solubility and precipitation during the initial period of zeolite synthesis. J Phys Chem C 115(20):9879–9888CrossRefGoogle Scholar
  37. 37.
    White CE, Provis JL, Proffen T, van Deventer JSJ (2012) Molecular mechanisms responsible for the structural changes occurring during geopolymerization: multiscale simulation. AIChE J 58(7):2241–2253CrossRefGoogle Scholar
  38. 38.
    Zhang Z, Wang H, Provis JL, Bullen F, Reid A, Zhu Y (2012) Quantitative kinetic and structural analysis of geopolymers: part 1. The activation of metakaolin with sodium hydroxide. Thermochim Acta 539:23–33CrossRefGoogle Scholar
  39. 39.
    Zhang Z, Provis JL, Wang H, Bullen F, Reid A (2013) Quantitative kinetic and structural analysis of geopolymers: part 2. Thermodynamics of sodium silicate activation of metakaolin. Thermochim Acta 565:163–171CrossRefGoogle Scholar
  40. 40.
    Alonso S, Palomo A (2001) Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures. Cem Concr Res 31(1):25–30CrossRefGoogle Scholar
  41. 41.
    Granizo ML, Blanco MT (1998) Alkaline activation of metakaolin—an isothermal conduction calorimetry study. J Therm Anal 52(3):957–965CrossRefGoogle Scholar
  42. 42.
    Puligilla S, Mondal P (2013) Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem Concr Res 43:70–80CrossRefGoogle Scholar
  43. 43.
    Shi C, Day RL (1995) A calorimetric study of early hydration of alkali-slag cements. Cem Concr Res 25(6):1333–1346CrossRefGoogle Scholar
  44. 44.
    Bernal SA, Provis JL, Mejía de Gutierrez R, Rose V (2011) Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem Concr Compos 33(1):46–54CrossRefGoogle Scholar
  45. 45.
    Provis JL, Rees CA (2009) Geopolymer synthesis kinetics. In: Provis JL, van Deventer JSJ (eds) Geopolymers: structure, processing, properties and industrial applications. Woodhead, Cambridge, pp 118–136CrossRefGoogle Scholar
  46. 46.
    Provis JL, van Deventer JSJ (2007) Direct measurement of the kinetics of geopolymerisation by in situ energy dispersive X-ray diffractometry. J Mater Sci 42(9):2974–2981CrossRefGoogle Scholar
  47. 47.
    White CE, Page K, Henson NJ, Provis JL (2013) In situ synchrotron X-ray pair distribution function analysis of the early stages of gel formation in metakaolin-based geopolymers. Appl Clay Sci 73:17–25CrossRefGoogle Scholar
  48. 48.
    White CE, Provis JL, Bloomer B, Henson NJ, Page K (2013) In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics. Phys Chem Chem Phys 15(22):8573–8582CrossRefGoogle Scholar
  49. 49.
    Steins P, Poulesquen A, Diat O, Frizon F (2012) Structural evolution during geopolymerization from an early age to consolidated material. Langmuir 28(22):8502–8510CrossRefGoogle Scholar
  50. 50.
    White CE, Provis JL, Llobet A, Proffen T, van Deventer JSJ (2011) Evolution of local structure in geopolymer gels: an in situ neutron pair distribution function analysis. J Am Ceram Soc 94(10):3532–3539CrossRefGoogle Scholar
  51. 51.
    Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2007) In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir 23(17):9076–9082CrossRefGoogle Scholar
  52. 52.
    Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2008) The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloids Surf A 318(1–3):97–105CrossRefGoogle Scholar
  53. 53.
    Hajimohammadi A, Provis JL, van Deventer JSJ (2011) Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. J Colloid Interface Sci 357(2):384–392CrossRefGoogle Scholar
  54. 54.
    Hajimohammadi A, Provis JL, van Deventer JSJ (2010) The effect of alumina release rate on the mechanism of geopolymer gel formation. Chem Mater 22(18):5199–5208CrossRefGoogle Scholar
  55. 55.
    Hajimohammadi A, Provis JL, van Deventer JSJ (2011) The effect of silica availability on the mechanism of geopolymerisation. Cem Concr Res 41(3):210–216CrossRefGoogle Scholar
  56. 56.
    Provis JL, Lukey GC, van Deventer JSJ (2005) Do geopolymers actually contain nanocrystalline zeolites?—a reexamination of existing results. Chem Mater 17(12):3075–3085CrossRefGoogle Scholar
  57. 57.
    Provis JL, Duxson P, Lukey GC, van Deventer JSJ (2005) Statistical thermodynamic model for Si/Al ordering in amorphous aluminosilicates. Chem Mater 17(11):2976–2986CrossRefGoogle Scholar
  58. 58.
    Loewenstein W (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Miner 39(1–2):92–96Google Scholar
  59. 59.
    Davidovits J (1991) Geopolymers—inorganic polymeric new materials. J Therm Anal 37(8):1633–1656CrossRefGoogle Scholar
  60. 60.
    Rowles MR, Hanna JV, Pike KJ, Smith ME, O’Connor BH (2007) 29Si, 27Al, 1H and 23Na MAS NMR study of the bonding character in aluminosilicate inorganic polymers. Appl Magn Reson 32:663–689CrossRefGoogle Scholar
  61. 61.
    Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int J Inorg Mater 2(4):309–317CrossRefGoogle Scholar
  62. 62.
    Bernal SA, Provis JL, Walkley B, San Nicolas R, Gehman JD, Brice DG, Kilcullen A, Duxson P, van Deventer JSJ (2013) Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res 53:127–144CrossRefGoogle Scholar
  63. 63.
    Ruiz-Santaquiteria C, Skibsted J, Fernández-Jiménez A, Palomo A (2012) Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cem Concr Res 42(9):1242–1251CrossRefGoogle Scholar
  64. 64.
    Egami T (1990) Atomic correlations in non-periodic matter. Mater Trans JIM 31(3):163–176Google Scholar
  65. 65.
    Meral C, Benmore CJ, Monteiro PJM (2011) The study of disorder and nanocrystallinity in C–S–H, supplementary cementitious materials and geopolymers using pair distribution function analysis. Cem Concr Res 41(7):696–710CrossRefGoogle Scholar
  66. 66.
    White CE (2012) Pair distribution function analysis of amorphous geopolymer precursors and binders: the importance of complementary molecular simulation. Z Krist 227:304–312CrossRefGoogle Scholar
  67. 67.
    Bell JL, Sarin P, Provis JL, Haggerty RP, Driemeyer PE, Chupas PJ, van Deventer JSJ, Kriven WM (2008) Atomic structure of a cesium aluminosilicate geopolymer: a pair distribution function study. Chem Mater 20(14):4768–4776CrossRefGoogle Scholar
  68. 68.
    White CE, Provis JL, Proffen T, van Deventer JSJ (2010) The effects of temperature on the local structure of metakaolin-based geopolymer binder: a neutron pair distribution function investigation. J Am Ceram Soc 93(10):3486–3492CrossRefGoogle Scholar
  69. 69.
    Bell JL, Sarin P, Driemeyer PE, Haggerty RP, Chupas PJ, Kriven WM (2008) X-ray pair distribution function analysis of a metakaolin-based, KAlSi2O6·5.5H2O inorganic polymer (geopolymer). J Mater Chem 18:5974–5981CrossRefGoogle Scholar
  70. 70.
    Duxson P, Lukey GC, van Deventer JSJ (2006) Evolution of gel structure during thermal processing of Na-geopolymer gels. Langmuir 22(21):8750–8757CrossRefGoogle Scholar
  71. 71.
    Skinner LB, Chae SR, Benmore CJ, Wenk HR, Monteiro PJM (2010) Nanostructure of calcium silicate hydrates in cements. Phys Rev Lett 104:195502CrossRefGoogle Scholar
  72. 72.
    Soyer-Uzun S, Chae SR, Benmore CJ, Wenk H-R, Monteiro PJM (2012) Compositional evolution of calcium silicate hydrate (C–S–H) structures by total X-ray scattering. J Am Ceram Soc 95(2):793–798CrossRefGoogle Scholar
  73. 73.
    White CE, Provis JL, Proffen T, Riley DP, van Deventer JSJ (2010) Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Phys Chem Chem Phys 12(13):3239–3245CrossRefGoogle Scholar
  74. 74.
    White CE, Provis JL, Proffen T, Riley DP, van Deventer JSJ (2010) Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation. J Phys Chem A 114(14):4988–4996CrossRefGoogle Scholar
  75. 75.
    White CE, Provis JL, Gordon LE, Riley DP, Proffen T, van Deventer JSJ (2011) The effect of temperature on the local structure of kaolinite intercalated with potassium acetate. J Am Ceram Soc 23(2):188–199Google Scholar
  76. 76.
    Reiss CA, Kharchenko A, Gateshki M (2012) On the use of laboratory X-ray diffraction equipment for pair distribution function (PDF) studies. Z Kristall 227(5):257–261CrossRefGoogle Scholar
  77. 77.
    Aly Z, Vance ER, Perera DS, Hanna JV, Griffith CS, Davis J, Durce D (2008) Aqueous leachability of metakaolin-based geopolymers with molar ratios of Si/Al = 1.5–4. J Nucl Mater 378(2):172–179CrossRefGoogle Scholar
  78. 78.
    Duxson P, Lukey GC, Separovic F, van Deventer JSJ (2005) The effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res 44(4):832–839CrossRefGoogle Scholar
  79. 79.
    Duxson P, Provis JL, Lukey GC, van Deventer JSJ, Separovic F, Gan ZH (2006) 39K NMR of free potassium in geopolymers. Ind Eng Chem Res 45(26):9208–9210CrossRefGoogle Scholar
  80. 80.
    Bortnovsky O, Dědeček J, Tvarůžková Z, Sobalík Z, Šubrt J (2008) Metal ions as probes for characterization of geopolymer materials. J Am Ceram Soc 91(9):3052–3057CrossRefGoogle Scholar
  81. 81.
    Najafi Kani E, Allahverdi A, Provis JL (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem Concr Compos 34(1):25–33CrossRefGoogle Scholar
  82. 82.
    Škvára F, Kopecký L, Myšková L, Šmilauer V, Alberovská L, Vinšová L (2009) Aluminosilicate polymers—influence of elevated temperatures, efflorescence. Ceram Silik 53(4):276–282Google Scholar
  83. 83.
    Smith MA, Osborne GJ (1977) Slag/fly ash cements. World Cem Technol 1(6):223–233Google Scholar
  84. 84.
    Provis JL, Harrex RM, Bernal SA, Duxson P, van Deventer JSJ (2012) Dilatometry of geopolymers as a means of selecting desirable fly ash sources. J Non Cryst Solids 358(16):1930–1937CrossRefGoogle Scholar
  85. 85.
    Palomo A, Alonso S, Fernández-Jiménez A, Sobrados I, Sanz J (2004) Alkaline activation of fly ashes: NMR study of the reaction products. J Am Ceram Soc 87(6):1141–1145CrossRefGoogle Scholar
  86. 86.
    Shigemoto N, Sugiyama S, Hayashi H, Miyaura K (1995) Characterization of Na–X, Na–A, and coal fly ash zeolites and their amorphous precursors by IR, MAS NMR and XPS. J Mater Sci 30(22):5777–5783CrossRefGoogle Scholar
  87. 87.
    Provis JL, Duxson P, van Deventer JSJ (2010) The role of particle technology in developing sustainable construction materials. Adv Powder Technol 21(1):2–7CrossRefGoogle Scholar
  88. 88.
    Lloyd RR (2009) Accelerated ageing of geopolymers. In: Provis JL, van Deventer JSJ (eds) Geopolymers: structure, processing, properties and industrial applications. Woodhead, Cambridge, pp 139–166CrossRefGoogle Scholar
  89. 89.
    De Silva P, Sagoe-Crentsil K (2008) Medium-term phase stability of Na2O–Al2O3–SiO2–H2O geopolymer systems. Cem Concr Res 38(6):870–876CrossRefGoogle Scholar
  90. 90.
    Shi C, Day RL (1996) Selectivity of alkaline activators for the activation of slags. Cem Concr Aggress 18(1):8–14CrossRefGoogle Scholar
  91. 91.
    Richardson IG, Brough AR, Groves GW, Dobson CM (1994) The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C–S–H) paste. Cem Concr Res 24(5):813–829CrossRefGoogle Scholar
  92. 92.
    Ben Haha M, Le Saout G, Winnefeld F, Lothenbach B (2011) Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res 41(3):301–310CrossRefGoogle Scholar
  93. 93.
    Ismail I, Bernal SA, Provis JL, San Nicolas R, Hamdan S, van Deventer JSJ (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos 45:125–135CrossRefGoogle Scholar
  94. 94.
    Wang SD, Scrivener KL (1995) Hydration products of alkali-activated slag cement. Cem Concr Res 25(3):561–571CrossRefGoogle Scholar
  95. 95.
    Krivenko PV (1994) Alkaline cements. In: Krivenko PV (ed) Proceedings of the first international conference on alkaline cements and concretes, Kiev, Ukraine, VIPOL Stock Company, pp 11–129Google Scholar
  96. 96.
    Gruskovnjak A, Lothenbach B, Holzer L, Figi R, Winnefeld F (2006) Hydration of alkali-activated slag: comparison with ordinary Portland cement. Adv Cem Res 18(3):119–128CrossRefGoogle Scholar
  97. 97.
    Hong S-Y, Glasser FP (2002) Alkali sorption by C–S–H and C–A–S–H gels: part II. Role of alumina. Cem Concr Res 32(7):1101–1111CrossRefGoogle Scholar
  98. 98.
    García-Lodeiro I, Palomo A, Fernández-Jiménez A, Macphee DE (2011) Compatibility studies between N–A–S–H and C–A–S–H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem Concr Res 41(9):923–931CrossRefGoogle Scholar
  99. 99.
    Puertas F, Fernández-Jiménez A, Blanco-Varela MT (2004) Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem Concr Res 34:139–148CrossRefGoogle Scholar
  100. 100.
    Bernal SA, San Nicolas R, Provis JL, Mejía de Gutiérrez R, van Deventer JSJ (2013) Natural carbonation of aged alkali-activated slag concretes. Mater Struct. doi: 10.1617/s11527-11013-10089-11522 (in press)Google Scholar
  101. 101.
    Bernal SA, Provis JL, Brice DG, Kilcullen A, Duxson P, van Deventer JSJ (2012) Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: the role of pore solution chemistry. Cem Concr Res 42(10):1317–1326CrossRefGoogle Scholar
  102. 102.
    Bakharev T, Sanjayan JG, Cheng YB (2001) Resistance of alkali-activated slag concrete to alkali-aggregate reaction. Cem Concr Res 31(2):331–334CrossRefGoogle Scholar
  103. 103.
    Fernández-Jiménez A, Puertas F (2002) The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem Concr Res 32(7):1019–1024CrossRefGoogle Scholar
  104. 104.
    Gifford PM, Gillott JE (1996) Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete. Cem Concr Res 26(1):21–26CrossRefGoogle Scholar
  105. 105.
    Kupwade-Patil K, Allouche EN (2013) Impact of alkali silica reaction on fly ash-based geopolymer concrete. J Mater Civ Eng 25(1):131–139CrossRefGoogle Scholar
  106. 106.
    Lloyd RR, Provis JL, van Deventer JSJ (2010) Pore solution composition and alkali diffusion in inorganic polymer cement. Cem Concr Res 40(9):1386–1392CrossRefGoogle Scholar
  107. 107.
    Ismail I, Bernal SA, Provis JL, Hamdan S, van Deventer JSJ (2013) Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater Struct 46(3):361–373CrossRefGoogle Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations