Materials and Structures

, Volume 47, Issue 9, pp 1513–1529 | Cite as

A comparative study of the heterogeneous local mechanical response of two types of asphalt mixes

  • M. GrédiacEmail author
  • E. Toussaint
  • C. Petit
  • A. Millien
  • D. C. Ngyuen
Original Article


Two asphalt specimens featuring very different gradations, types of aggregates and binders are investigated in this study. A full-field measurement technique is used for this purpose: the grid method. Displacement and strain fields are captured during compression tests carried out on these specimens. The displacement and strain fields are analyzed and compared in light of the main characteristics of these materials. It is shown that a close relationship exists between gradation and ratio between local and global strain components. The strain recovery that follows the loading phase of the specimens is also analyzed and the difference between their mechanical response at the local level is also highlighted.


Asphalt Grid method Strain localization Strain measurement 



The CETE Autun-Lyon, France, and the University of Illinois, USA, are gratefully acknowledged for providing the materials investigated in this study.


  1. 1.
    Yusoff N, Shaw M, Airey G (2011) Modelling the linear viscoelastic rheological properties of bituminous binders. Constr Build Mater 25(5):2171CrossRefGoogle Scholar
  2. 2.
    Yusoff N, Mounier D, Marc-Stéphane G, Hainin MR, Airey G, Benedetto HD (2013) Modelling the rheological properties of bituminous binders using the 2s2p1d model. Constr Build Mater 38:395CrossRefGoogle Scholar
  3. 3.
    Tehrani FF, Quignon J, Allou F, Absi F, Petit C (2013) 2d/3d biphasic modelling of the dynamic modulus of bituminous materials. Eur J Environ Civ Eng 17(6):430–443Google Scholar
  4. 4.
    Birgisson B, Montepara A, Romeo E, Roncella R, Napier J, Tebaldi G (2008) Determination and prediction of crack patterns in hot asphalt (hma) mixtures. Eng Fract Mech 75:664CrossRefGoogle Scholar
  5. 5.
    Birgisson B, Montepara A, Romeo E, Roncella R, Roque R, Tebaldi G (2009) An optical strain measurement system for asphalt mixtures. Mater Struct 42:427CrossRefGoogle Scholar
  6. 6.
    Seo Y, Kim Y, Witczak MW, Bonaquist R (2002) Application of digital image correlation method to mechanical testing of asphalt-aggregate mixtures. In: Bituminous paving mixtures. Transportation Research Board, Washington DC, pp 162–172Google Scholar
  7. 7.
    Coleri E, Harvey J, Yang K, Boone J (2012) A micromechanical approach to investigate asphalt concrete rutting mechanisms. Constr Build Mater 30:36CrossRefGoogle Scholar
  8. 8.
    Grédiac M, Toussaint E (2013) Studying the mechanical behaviour of asphalt mixtures with the grid method, Strain. Int J Exp Mech 31(1):916–925Google Scholar
  9. 9.
    NE 13108 (2006) French standard. "Mélanges bitumineux – Spécification des matériaux"Google Scholar
  10. 10.
    NE 12697-33 (2007) French standard. "Mélange bitumineux – Méthodes d’essai pour mélange hydrocarboné chaud – Partie 33: confection d’éprouvettes au compacteur de plaque"Google Scholar
  11. 11.
    NE 12591 (2009) French standard. "Bitumes et liants bitumineux – Spécifications des bitumes routiers" Google Scholar
  12. 12.
    Piro J, Grédiac M (2004) Producing and transferring low-spatial-frequency grids for measuring displacement fields with moiré and grid methods. Exp Tech 28(4):23CrossRefGoogle Scholar
  13. 13.
    Surrel Y (2000) Fringe analysis. In: Rastogi PK (ed) Photomechanics, topics in applied physics, vol 77. Springer, Berlin, pp 55–102Google Scholar
  14. 14.
    Kemao Q (2007) Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations. Op Lasers Eng 45(2):304MathSciNetCrossRefGoogle Scholar
  15. 15.
    Badulescu C, Grédiac M, Mathias JD (2009) Investigation of the grid method for accurate in-plane strain measurement. Meas Sci Technol 20(9):20:095102Google Scholar
  16. 16.
    Moulart R, Hallett FPS, Wisnom M (2011) Full-field strain measurement and identification of mechanical properties at high strain rate. Exp Mech 51(4):509CrossRefGoogle Scholar
  17. 17.
    Badulescu C, Grédiac M, Haddadi H, Mathias JD, Balandraud X, Tran HS (2011) Applying the grid method and infrared thermography to investigate plastic deformation in aluminium multicrystal. Mech Mater 43(11):36–53CrossRefGoogle Scholar
  18. 18.
    Delpueyo D, Grédiac M, Balandraud X, Badulescu C (2012) Investigation of martensitic microstructures in a monocrystalline Cu–Al–Be shape memory alloy with the grid method and infrared thermography. Mech Mater 45:34–51CrossRefGoogle Scholar
  19. 19.
    Sur F, Grédiac M (2013) Towards deconvolution to enhance the grid method for in-plane strain measurement. Inverse Probl Imaging (in review)Google Scholar
  20. 20.
    Grédiac M, Sur F, Badulescu C, Mathias JD (2013) Using deconvolution to improve the metrological performance of the grid method. Opt Lasers Eng 51:716–734CrossRefGoogle Scholar
  21. 21.
    Celauro C, Fecarotti C, Pirrotta A (2012) Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures. Constr Build Mater 36:458CrossRefGoogle Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • M. Grédiac
    • 1
    Email author
  • E. Toussaint
    • 1
  • C. Petit
    • 2
  • A. Millien
    • 2
  • D. C. Ngyuen
    • 1
  1. 1.Institut PascalClermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.Groupe d’Etude des Matériaux Hétérogènes, Centre Universitaire Génie CivilUniversité de LimogesEgletonsFrance

Personalised recommendations