Materials and Structures

, Volume 47, Issue 4, pp 729–748 | Cite as

Influence of temporal resolution and processing of exposure data on modeling of chloride ingress and reinforcement corrosion in concrete

  • Madeleine Flint
  • Alexander Michel
  • Sarah L. Billington
  • Mette R. Geiker
Original Article


The impacts of temporal resolution and processing of exposure data on the long-term chloride ingress and reinforcement corrosion in concrete were studied. Exposure data from one simulated and two real climates was processed to create boundary conditions for a one-dimensional geometry studied using a numerical heat and mass transport model that includes full coupling of heat, moisture and ion transport. Heat, moisture, and chloride concentration distributions were passed to a simplified reinforcement corrosion initiation and propagation model. The numerical study indicates that processing and temporal resolution of the exposure data has a considerable impact on long-term hygrothermal distribution, chloride ingress, and reinforcement section loss results. Use of time-averaged exposure data in the heat and mass transport model reduces the rate of chloride ingress in concrete and affects prediction of reinforcement corrosion initiation and propagation. Randomly sampled exposure data at daily, weekly, or monthly resolution yields prediction of reinforcement corrosion initiation and propagation closer to original resolution results than time-averaged exposure data.


Numerical model Exposure data Hygrothermal Concrete Chloride-induced corrosion 


  1. 1.
    Pedersen CR (1990) Combined heat and moisture transfer in building constructions, Thermal Insulation Laboratory, Technical University of DenmarkGoogle Scholar
  2. 2.
    Galbraith GH (1992) Heat and mass transfer within porous building materials, University of StrathclydeGoogle Scholar
  3. 3.
    Bonnet, S. (1997). Influence of chloride on equilibrium behaviour and on transfer properties of civil engineering materials (in French). PhD, INSAGoogle Scholar
  4. 4.
    Künzel HM (1994) Verfahren zur ein-und zweidimensionalen Berechnung des gekoppelten Wärme-und Feuchtetransports in Bauteilen mit einfachen Kennwerten, PhD Thesis, University of StuttgartGoogle Scholar
  5. 5.
    Pel L, Brocken H, Kopinga K (1996) Determination of moisture diffusivity in porous media using moisture concentration profiles. Int J Heat Mass Transf 39(6):1273–1280Google Scholar
  6. 6.
    Carmeliet J, Roels S (2001) Determination of the isothermal moisture transport properties of porous building materials. J Build Phys 24(3):183–210Google Scholar
  7. 7.
    Carmeliet J, Roels S (2002) Determination of the moisture capacity of porous building materials. J Build Phys 25(3):209–237CrossRefGoogle Scholar
  8. 8.
    Carmeliet J, Hens H, Roels S, Adan O, Brocken H, Cerny R, Pavlik Z, Hall C, Kumaran K, Pel L (2004) Determination of the liquid water diffusivity from transient moisture transfer experiments. J Therm Envel Build Sci 27(4):277–305Google Scholar
  9. 9.
    Blocken B, Roels S, Carmeliet J (2007) A combined CFD‚ HAM approach for wind-driven rain on building facades. J Wind Eng Ind Aerodyn 95(7):585–607CrossRefGoogle Scholar
  10. 10.
    Cornick S, Dalgliesh A, Maref W (2009) Sensitivity of hygrothermal analysis to uncertainty in rain data. J ASTM Int 6(4):1–17CrossRefGoogle Scholar
  11. 11.
    Zhao J, Plagge R, Nicolai A, Grunewald J, Zhang JS (2011) Stochastic study of hygrothermal performance of a wall assembly: the influence of material properties and boundary coefficients. HVAC R Res 17(4):591–601Google Scholar
  12. 12.
    Saetta A, Scotta R, Vitaliani R (1995) Stress analysis of concrete structures subjected to variable thermal loads. J Struct Eng 121(3):446–457CrossRefGoogle Scholar
  13. 13.
    Janssen H, Blocken B, Carmeliet J (2007) Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation. Int J Heat Mass Transf 50(5):1128–1140CrossRefMATHGoogle Scholar
  14. 14.
    Meira G, Andrade C, Alonso C, Padaratz I, Borba J (2008) Modelling sea-salt transport and deposition in marine atmosphere zone-A tool for corrosion studies. Corros Sci 50(9):2724–2731CrossRefGoogle Scholar
  15. 15.
    McGee R (1999) Modelling of durability performance of Tasmanian bridges. 8th Int. Conf. on the Appl. of Stat. and Probab., Sydney, Australia 1999Google Scholar
  16. 16.
    Gong S, Barrie L, Blanchet J (1997) Modeling sea-salt aerosols in the atmosphere 1. Model development. J Geophys Res 102:3805–3818CrossRefGoogle Scholar
  17. 17.
    Flint M, Michel A, Gussiås A, Larsen CK, Østvik JM (2012) Overview of US-Norway Collaboration on Bridge Repair Sustainability. Proc. Int. Congr. on Durab. of Concr. Trondheim, Norway 2012Google Scholar
  18. 18.
    Hens, H. (2010). Applied building physics. Editora Ernst & SohnGoogle Scholar
  19. 19.
    Philip JR, de Vries DA (1957) Moisture movement in porous materials under temperature gradients. Trans Am Geophys Union 38:222–232CrossRefGoogle Scholar
  20. 20.
    Dullien FAL (1979) Porous media: fluid transport and pore structure. Academic, New YorkGoogle Scholar
  21. 21.
    Bear J, Bachmat Y (1991) Introduction to modeling of transport phenomena in porous media. Kluwer Academic, DordrechtGoogle Scholar
  22. 22.
    Scheffler GA (2009) Validation of hygrothermal material modelling under consideration of the hysteresis of moisture storage. Ph.D. thesis, Technical University of DresdenGoogle Scholar
  23. 23.
    Scheffler GA, Plagge R (2010) A whole range hygric material model: modelling liquid and vapour transport properties in porous media. Int J Heat Mass Transf 53(1-3):286–296CrossRefMATHGoogle Scholar
  24. 24.
    Buchwald A (2000) Determination of the ion diffusion coefficient in moisture and salt loaded masonry materials by impedance spectroscopy. Proc. 3rd Int. PhD Symp. 2, Vienna, 2000Google Scholar
  25. 25.
    Tang LP, Nilsson LO (1993) Chloride binding-capacity and binding isotherms of OPC pastes and mortars. Cem Concr Res 23(2):247–253CrossRefGoogle Scholar
  26. 26.
    Glass G, Buenfeld N (2000) The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete. Corros Sci 42(2):329–344CrossRefGoogle Scholar
  27. 27.
    Pihlajavaara SE (1965) On the main features and methods of investigation of drying and related phenomena in concrete. Technical Research Center of Finland, HelsinkiGoogle Scholar
  28. 28.
    Hundt J, Kantelberg H (1978) Sorptionsuntersuchungen an Zementstein, Zementmörtel un Beton. Deutscher Ausschuss für Stahlbeton 297:25–39Google Scholar
  29. 29.
    Radjy F, Sellevold EF, Hansen KK (2003) Isoteric vapor pressure: temperature data for water sorption in hardened cement paste: enthalpy, entropy and sorption isotherms at different temperatures. Department of Civil Engineering, Technical University of DenmarkGoogle Scholar
  30. 30.
    Baroghel-Bouny V, Wang X (2011). Modelling of isothermal coupled moisture-ion transport in cementitious materials. Cem. and Concr. ResGoogle Scholar
  31. 31.
    fib (2010). Model code 2010, first complete draftGoogle Scholar
  32. 32.
    Life-365 (2010). Life-365 Service life prediction model and computer program for predicting the service life and life-cycle cost of reinforced concrete exposed to chloridesGoogle Scholar
  33. 33.
    Justnes H, Geiker MR (2012) A critical view on service life predictions based on chloride induced corrosion. Proc. MicroDurability, Amsterdam, 2012Google Scholar
  34. 34.
    El Hassan J, Bressolette P, Chateauneuf A, El Tawil K (2010) Reliability-based assessment of the effect of climatic conditions on the corrosion of RC structures subject to chloride ingress. Eng Struct 32(10):3279–3287CrossRefGoogle Scholar
  35. 35.
    Bastidas-Arteaga E, Schoefs F (2012) Stochastic improvement of inspection and maintenance of corroding reinforced concrete structures placed in unsaturated environments. Eng Struct 41:50–62CrossRefGoogle Scholar
  36. 36.
    Stewart MG, Wang XM, Nguyen MN (2012) Climate change adaptation for corrosion control of concrete infrastructure. Struct Saf 35:29–39CrossRefGoogle Scholar
  37. 37.
    Angst U, Elsener B, Larsen C, Vennesland (2009) Critical chloride content in reinforced concrete–a review. Cem Concr Res 39(12):1122–1138CrossRefGoogle Scholar
  38. 38.
    Buenfeld N, Glass G, Reddy B, Viles F (2004). Process for the protection of reinforcement in reinforced concrete. USPTO. Alexandria, VA, USA, US Patent 6675722Google Scholar
  39. 39.
    Nygaard PV, Geiker MR, Elsener B (2009) Corrosion rate of steel in concrete: evaluation of confinement techniques for on-site corrosion rate measurements. Mater Struct 42(8):1059–1076CrossRefGoogle Scholar
  40. 40.
    Michel A, Geiker MR, Stang H, Olesen JF, Solgaard AOS (2010) Numerical modelling of reinforcement corrosion, influence of steel fibres and moisture content on resistivity and corrosion current density. Proc. 3rd Intl PhD Workshop on Model. the Durab. of Reinf. Concr. Portugal, RILEMGoogle Scholar
  41. 41.
    Stern M, Geary A (1957) Electrochemical polarization I: a theoretical analysis of the shape of polarization curves. J Electrochem Soc 104:56–63CrossRefGoogle Scholar
  42. 42.
    Andrade C, Gonzalez J (1978) Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarisation resistance measurements. Mater Corros 29:515–519CrossRefGoogle Scholar
  43. 43.
    Larsen CK (2006) 10 years experience with repair of a coastal concrete bridge. Proc. Int. Conf. on Concr. Repair, Rehabil., and Retrofit. Cape Town, South Africa, 2005. Taylor & Francis USGoogle Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • Madeleine Flint
    • 1
    • 3
  • Alexander Michel
    • 2
    • 3
  • Sarah L. Billington
    • 1
  • Mette R. Geiker
    • 3
  1. 1.Department of Civil and Environmental EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Civil EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  3. 3.Department of Structural EngineeringNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations