Materials and Structures

, Volume 47, Issue 3, pp 541–562 | Cite as

Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: results of a RILEM round-robin test

  • Viktor Mechtcherine
  • Michaela Gorges
  • Christof Schroefl
  • Alexander Assmann
  • Wolfgang Brameshuber
  • António Bettencourt Ribeiro
  • Daniel Cusson
  • João Custódio
  • Eugênia Fonseca da Silva
  • Kazuo Ichimiya
  • Shin-ichi Igarashi
  • Agnieszka Klemm
  • Konstantin Kovler
  • Anne Neiry de Mendonça Lopes
  • Pietro Lura
  • Van Tuan Nguyen
  • Hans-Wolf Reinhardt
  • Romildo Dias Toledo Filho
  • Jason Weiss
  • Mateusz Wyrzykowski
  • Guang Ye
  • Semion Zhutovsky
Original Article

Abstract

The article presents the results of a round-robin test performed by 13 international research groups (representing fifteen institutions) in the framework of the activities of the RILEM Technical Committee 225-SAP “Applications of Superabsorbent Polymers in Concrete Construction”. Two commercially available SAP materials were used for internal curing of a high-performance, fine-grained concrete in combination with the addition of extra water. The concrete had the same mix composition in all laboratories involved but was composed of local materials. All found a considerable decrease in autogenous shrinkage attributable to internal curing. Also, with regard to the shrinkage-mitigating effect of both particular SAP materials, the results were consistent. This demonstrates that internal curing using SAP is a robust approach, working independently of some variations in the concretes’ raw materials, production process, or measuring technique. Furthermore, the effects of internal curing on other properties of concrete in its fresh and hardened states were investigated. These are consistent as well and expand considerably the existing data basis on properties of concrete materials containing SAP.

Keywords

Autogenous shrinkage Internal curing Superabsorbent polymers 

References

  1. 1.
    Jensen OM, Hansen PF (2001) Water-entrained cement-based materials I. Principles and theoretical background. Cem Concr Res 31:647–654CrossRefGoogle Scholar
  2. 2.
    Kovler K, Jensen OM (eds) (2007) Internal curing of concrete, in: state-of-the-art report prepared by the RILEM technical committee 196-ICC, RILEM report 41. RILEM Publications S.A.R.L, BagneuxGoogle Scholar
  3. 3.
    Mechtcherine V, Dudziak L, Schulze J, Staehr H (2006) Internal curing by superabsorbent polymers (SAP): effects on material properties of self-compacting fibre-reinforced high performance concrete. In: Jensen OM, Lura P, Kovler K (eds) International RILEM conference on volume changes of hardening concrete: testing and mitigation, RILEM proceedings PRO 052. RILEM Publications S.A.R.L, Bagneux, pp 87–96CrossRefGoogle Scholar
  4. 4.
    Mechtcherine V, Reinhardt HW (eds) (2012) Application of superabsorbent polymers in concrete construction. In: State-of-the-art report prepared by the RILEM TC 225-SAP. Springer, HeidelbergGoogle Scholar
  5. 5.
    Schröfl C, Mechtcherine V, Gorges M (2012) Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cem Concr Res 42:865–873CrossRefGoogle Scholar
  6. 6.
    EN 1015-3:1999 (1999) Methods of test for mortar for masonry—part 3: determination of consistence of fresh mortar (by flow table). CEN European Committee for Standardization, BrusselsGoogle Scholar
  7. 7.
    JIS R 5201:1997 (1997) Physical testing methods for cement. JSA Japanese Standards Association, TokyoGoogle Scholar
  8. 8.
    ASTM Standard C1437 (2007) Standard test method for flow of hydraulic cement mortar. ASTM International, West Conshohocken. doi:10.1520/C1437-07, www.astm.org
  9. 9.
    EN 1015-6:1998 (1998) Methods of test for mortar for masonry—part 6: determination of bulk density of fresh mortar. CEN European Committee for Standardization, BrusselsGoogle Scholar
  10. 10.
    EN 1015-7:1998 (1998) Methods of test for mortar for masonry—part 7: determination of air content of fresh mortar. CEN European Committee for Standardization, BrusselsGoogle Scholar
  11. 11.
    ASTM Standard C185 (2008) Standard test method for air content of hydraulic cement mortar. ASTM International, West Conshohocken. doi:10.1520/C0185-08, www.astm.org
  12. 12.
    EN 196-3:2005 (2005) Methods of testing cement—part 3: determination of setting times and soundness. CEN European Committee for Standardization, BrusselsGoogle Scholar
  13. 13.
    ASTM Standard C403/C403 M (2008) Standard test method for time of setting of concrete mixtures by penetration resistance. ASTM International, West Conshohocken. doi:10.1520/C0403_0403M-08, www.astm.org
  14. 14.
    Reinhardt HW, Grosse CU, Herb AT (2000) Ultrasonic monitoring of setting and hardening of cement mortar: a new device. Mater Struct 33:580–583Google Scholar
  15. 15.
    Silva EF, Lopes ANM, Filho RDT, Fairbairn EM (2010) Use of ultrasonic wave to measure time-zero in high performance concretes (HPC) containing shrinkage reducing admixture (SRA). In: Proceedings of the XXXIV Jornadas Sudamericanas de Ingeniería Estructural, San Juan (in Portuguese)Google Scholar
  16. 16.
    ASTM Standard C-1698 (2009) Standard test method for autogenous strain of cement paste and mortar. ASTM International, West Conshohocken. doi:10.1520/C1698-09, www.astm.org
  17. 17.
    Tazawa E (1999) Autogenous shrinkage of concrete and its importance in concrete technology. In: Proceedings of the international workshop on autogenous shrinkage of concrete, JCI (Japan Concrete Institute), Hiroshima. E. & F.N. Spon, LondonGoogle Scholar
  18. 18.
    Kovler K (1994) Testing system for determining the mechanical behaviour of early age concrete under restrained and free uniaxial shrinkage. Mater Struct 27:324–330CrossRefGoogle Scholar
  19. 19.
    EN 1015-11:1999 (1999) Methods of test for mortar for masonry—part 11: determination of flexural and compressive strength of hardened mortar. CEN European Committee for Standardization, BrusselsGoogle Scholar
  20. 20.
    EN 196-1:2005 (2005) Methods of testing cement—part 1: determination of strength. CEN European Committee for Standardization, BrusselsGoogle Scholar
  21. 21.
    ABNT NBR 13279:2005 (2005) Mortars applied on walls and ceilings—determination of the flexural and the compressive strength in the hardened stage. ABNT Brazilian National Standards Organization, São PauloGoogle Scholar
  22. 22.
    ASTM C348 (2008) Standard test method for flexural strength of hydraulic-cement mortars. ASTM International, West Conshohocken. doi:10.1520/C0348-08, www.astm.org
  23. 23.
    ASTM C109/C109 M (2011b) Standard Test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM International, West Conshohocken. doi:10.1520/C0109_C0109M-11B, www.astm.org
  24. 24.
    ASTM C78/C78 M (2010) Standard test method for flexural strength of concrete (using simple beam with third-point loading). ASTM International, West Conshohocken. doi:10.1520/C0078_C0078M-10, www.astm.org
  25. 25.
    Baroghel-Bouny V, Mounanaga P, Khelidj A, Loukili A, Rafai N (2006) Autogenous deformations of cement pastes: Part II. W/C effects, micro–macro correlations, and threshold values. Cem Concr Res 36:123–136CrossRefGoogle Scholar
  26. 26.
    Sant G, Lothenbach B, Juilland P, Le Saout G, Weiss J, Scrivener K (2011) The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures. Cem Concr Res 41:218–229CrossRefGoogle Scholar
  27. 27.
    Bentz DP, Geiker M, Jensen OM (2002) On the mitigation of early age cracking. In: Persson B, Fagerlund G (eds) Proceedings of international seminar on self-desiccation and its importance in concrete technology III. Lund University, Lund, pp 195–204Google Scholar
  28. 28.
    EN 12390-3:2009 (2009) Testing hardened concrete. Compressive strength of test specimens. CEN European Committee for Standardization, BrusselsGoogle Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • Viktor Mechtcherine
    • 1
  • Michaela Gorges
    • 1
  • Christof Schroefl
    • 1
  • Alexander Assmann
    • 2
  • Wolfgang Brameshuber
    • 3
  • António Bettencourt Ribeiro
    • 4
  • Daniel Cusson
    • 5
  • João Custódio
    • 4
  • Eugênia Fonseca da Silva
    • 6
  • Kazuo Ichimiya
    • 7
  • Shin-ichi Igarashi
    • 8
  • Agnieszka Klemm
    • 15
  • Konstantin Kovler
    • 9
  • Anne Neiry de Mendonça Lopes
    • 10
  • Pietro Lura
    • 11
  • Van Tuan Nguyen
    • 14
  • Hans-Wolf Reinhardt
    • 2
  • Romildo Dias Toledo Filho
    • 12
  • Jason Weiss
    • 13
  • Mateusz Wyrzykowski
    • 11
  • Guang Ye
    • 14
  • Semion Zhutovsky
    • 9
  1. 1.Institute of Construction Materials, Technische Universität DresdenDresdenGermany
  2. 2.Department of Construction MaterialsUniversity of StuttgartStuttgartGermany
  3. 3.Institute of Building Materials Research, RWTH Aachen UniversityAachenGermany
  4. 4.Concrete and Cement Testing Laboratory (LabTech)National Laboratory for Civil Engineering (LNEC)LisbonPortugal
  5. 5.Concrete Structures, National Research Council CanadaOttawaCanada
  6. 6.Department of Civil and Environmental EngineeringUniversity of BrasiliaBrasíliaBrazil
  7. 7.Department of Civil and Environmental EngineeringOita National College of TechnologyOitaJapan
  8. 8.Institute of Science and EngineeringKanazawa UniversityKanazawaJapan
  9. 9.Structural Engineering and Construction ManagementTechnion Israel Institute of TechnologyHaifaIsrael
  10. 10.Eletrobras Furnas Hydroelectric CompanyGoiâniaBrazil
  11. 11.Concrete and Construction Chemistry LaboratoryEMPADuebendorfSwitzerland
  12. 12.Civil Engineering ProgramFederal University of Rio de JaneiroRio de JaneiroBrazil
  13. 13.Civil Engineering MaterialsPurdue UniversityWest LafayetteUSA
  14. 14.Materials and EnvironmentDelft University of TechnologyDelftThe Netherlands
  15. 15.School of Engineering and Built EnvironmentGlasgow Caledonian UniversityGlasgowUK

Personalised recommendations