Advertisement

Materials and Structures

, Volume 47, Issue 1–2, pp 323–334 | Cite as

Bond behavior between steel reinforcement and recycled concrete

  • Sindy Seara-PazEmail author
  • Belén González-Fonteboa
  • Javier Eiras-López
  • Manuel F. Herrador
Original Article

Abstract

In this paper the bond behavior of recycled aggregate concrete was characterized by replacing different percentages of natural coarse aggregate with recycled coarse aggregate (20, 50 and 100 %). The results made it possible to establish the differences between the conventional concrete bond strength and the recycled concrete bond strength depending on the replacement percentage. It was thus found that bond stress decreases with the increase of the percentage of recycled coarse aggregate used. In order to define the influence of recycled aggregate content on bond behavior, normalized bond strength was calculated taking into account the reduced compressive strength of the recycled concretes. Finally, using the experimental results, a modified expression for maximum bond stress (bond strength) prediction was developed, taking into account replacement percentage and compressive strength. The obtained results show that the equation proposed provides an experimental value to theoretical prediction ratio similar to that of conventional concrete.

Keywords

Recycled concrete Bond strength Pull-out test Normalized bond strength Time-dependent compressive strength Steel reinforcement 

Notes

Acknowledgments

The study is part of two projects entitled:.

“Clean, efficient and nice construction along its life cycle (CLEAM)” funded by the Centre for the Technology and Industrial Development (CDTI) and led by the Group of Economical Interest CLEAM-CENIT, AIE comprising by the country’s largest construction companies (Acciona, Dragados, Ferrovial, FCC, Isolux Corsán, OHL and Sacyr) and some PYME (Informática 68, Quilosa and Martínez Segovia y asociados).

“Bond and anchorage of passive reinforcement steel in concrete (ADHAN)” funded by the Ministry of Science and Innovation.

The experimental program was carried out at the Construction laboratories of Technological Innovation Centre of Building and Civil Engineering (CITEEC) and Civil Engineering School, of A Coruña University.

References

  1. 1.
    Sánchez de Juan M (2005) Estudio sobre la Utilización de Árido Reciclado para la Fabricación de Hormigón Estructural. Thesis, E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de MadridGoogle Scholar
  2. 2.
    Ravindrarajah RS, Loo YH, Tam CT (1987) recycled concrete as fine and coarse aggregate in concrete. Mag Concr Res 39:214–220. ISSN: 00249831Google Scholar
  3. 3.
    Etxeberria M, Vázquez E, Marí A, Barra M (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem Concr Res 37:735–742. doi: 10.1016/j.cemconres.2007.02.002 CrossRefGoogle Scholar
  4. 4.
    González-Fonteboa B, Martínez-Abella F (2008) Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Build Environ 43:429–437. doi: 10.1016/j.buildenv.2007.01.008 CrossRefGoogle Scholar
  5. 5.
    Evangelista L, de Brito J (2007) Mechanical behaviour of concrete made with fine recycled concrete aggregate. Cem Concr Compos 29:397–401. doi: 10.1016/j.cemconcomp.2006.12.004 CrossRefGoogle Scholar
  6. 6.
    Xiao J, Wenguil L, Yuhui F, Xiao H (2012) An overview of study on recycled aggregate concrete in China (1996–2011). Constr Build Mater 31:364–383. doi: 10.1016/j.conbuildmat.2011.12.074 CrossRefGoogle Scholar
  7. 7.
    Ajdukiewicz A, Kliszczewicz A (2002) Influence of recycled aggregates on mechanical properties of HS/HPC. Cem Concr Compos 24:269–279CrossRefGoogle Scholar
  8. 8.
    Jiménez JR, Ayuso J, Galvín AP, López M, Agrela F (2012) Use of mixed recycled aggregates with a low embodied energy from non-selected CDW in unpaved rural roads. Constr Build Mater 34:34–43. doi: 10.1016/j.conbuildmat.2012.02.042 CrossRefGoogle Scholar
  9. 9.
    Pérez-Benedicto JA, del Río-Merino M, Peralta-Canudo JL, de la Rosa-La Mata M (2012) Mechanical characteristics of concrete with recycled aggregates coming from prefabricated discarded units. Mater Constr 62:25–37. doi: 10.3989/mc.2011.62110 CrossRefGoogle Scholar
  10. 10.
    Corinaldesi V, Moriconi G (2009) Influence of mineral additions on the performance of 100% recycled aggregate concrete. Constr Build Mater 23:2869–2876. doi: 10.1016/j.conbuildmat.2009.02.004 CrossRefGoogle Scholar
  11. 11.
    Butler L, West JS, Tighe SL (2011) The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. Cem Concr Res 41:1037–1049. doi: 10.1016/j.cemconres.2011.06.004 CrossRefGoogle Scholar
  12. 12.
    Xiao J, Falkner H (2007) Bond behaviour between recycled aggregate concrete and steel rebars. Constr Build Mater 21:395–401. doi: 10.1016/j.conbuildmat.2005.08.008 CrossRefGoogle Scholar
  13. 13.
    Almeida Filho FM, El Debs MK, El Debs ALHC (2008) Bond-slip behavior of self-compacting concrete and vibrated concrete using pull-out and beam tests. Mater Struct 41:1073–1089. doi: 10.1617/s11527-007-9307-0 CrossRefGoogle Scholar
  14. 14.
    Yalciner H, Eren O, Sensoy S (2012) An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level. Cem Concr Res 42:643–655. doi: 10.1016/j.cemconres.2012.01.003 CrossRefGoogle Scholar
  15. 15.
    Foroughi-Asl A, Dilmaghani S, Famili H (2008) Bond strength of reinforcement steel in self-compacting concrete. Int J Civ Eng 6(1):24–33Google Scholar
  16. 16.
    Molina M, Gutiérrez JP, García MD (2004) Influencia del diámetro de la barra y del recubrimiento en las características adherentes del hormigón armado. Bol Soc Esp Ceram 43:560–564CrossRefGoogle Scholar
  17. 17.
    Fib Bulletin 10 (August 2000) Bond of reinforcement in concrete. State of the art report prepared by Task Group Bond Models, former CEB, Task Group 5.2, Lausanne, p. 427Google Scholar
  18. 18.
    Eguchi K, Teranishi K, Nakagome A, Kishimoto H, Shinozaki K, Narikawa M (2007) Application of recycled coarse aggregate by mixture to concrete construction. Constr Build Mater 21:1542–1551. doi: 10.1016/j.conbuildmat.2005.12.023 CrossRefGoogle Scholar
  19. 19.
    Kim Y, Sim J, Park Cl (2012) Mechanical properties of recycled aggregate concrete with deformed steel re-bar. J Mar Sci Technol 20(3):274–280. ISSN:10232796Google Scholar
  20. 20.
    EHE-08 (2008) Spanish structural concrete code. Publicaciones del Ministerio de Fomento. Secretaría General Técnica, MadridGoogle Scholar
  21. 21.
    González-Fonteboa B, Martínez-Abella F, Herrador MF, Seara-Paz S (2012) Structural recycled concrete: behaviour under low loading rate. Constr Build Mater 28:111–116. doi: 10.1016/j.conbuildmat.2011.08.010 CrossRefGoogle Scholar
  22. 22.
    Sato R, Maruyama I, Sogabe T, Sogo M (2007) Flexural behaviour of reinforcement recycled concrete beams. J Adv Concr Technol 5(1):43–61CrossRefGoogle Scholar
  23. 23.
    González-Fonteboa B, Martínez-Abella F, Eiras-López J, Seara-Paz S (2011) Effect of recycled coarse aggregate on damage of recycled concrete. Mater Struct 44:1759–1771. doi: 10.1617/s11527-011-9736-7 CrossRefGoogle Scholar
  24. 24.
    RILEM TC9‐RC (1983). RC 6 Bond test for reinforcement steel. 2. Pull‐out test. RILEM recommendations for the testing and use of constructions materials, 1994, pp 18–220Google Scholar
  25. 25.
    Faury J (1958) Le béton, 3ª edition. Dunod, ParisGoogle Scholar
  26. 26.
    Dapena E, Alaejos P, Lobet A, Pérez D (2011) Effect of recycled sand content on characteristics of mortars and concretes. J Mater Civ Eng 23(4):414–422. doi: 10.1061/(ASCE)MT.1943-5533.0000183 CrossRefGoogle Scholar
  27. 27.
    López-Gayarre F, Serna P, Domingo-Cabo A, Serrano-López MA, López-Colina C (2009) Influence of recycled aggregate quality and proportioning criteria on recycled concrete properties. Waste Manag 29:3022–3028. doi: 10.1016/j.wasman.2009.07.010 CrossRefGoogle Scholar
  28. 28.
    Rahal K (2008) Mechanical properties of concrete with recycled coarse aggregate. Build Environ 42:407–415. doi: 10.1016/j.buildenv.2005.07.033 CrossRefGoogle Scholar
  29. 29.
    Sánchez de Juan M, Alaejos Gutiérrez P (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater 23:872–877. doi: 10.1016/j.conbuildmat.2008.04.012 CrossRefGoogle Scholar
  30. 30.
    Hansen TC, Narud H (1983) Strength of recycled concrete made from crushed concrete coarse aggregate. Concr Int 5:79–83Google Scholar
  31. 31.
    Nixon PJ (1987) Recycled concrete as an aggregate for concrete—a review. Mater Struct 65:371–378Google Scholar
  32. 32.
    Nealen A, Schenk S (1998) The influence of recycled aggregate core moisture on freshly mixed and hardened concrete properties. Darmstadt Concr 13. http://www.b-i-m.de/public/tudmassiv/dacon13nealenschenk.htm
  33. 33.
    Vos I, Reinhardt H (1982) Influence of loading rate on bond behaviour of reinforcing steel and prestressing strands. Mater Struct 15(1):3–10. doi: 10.1007/BF02473553 Google Scholar
  34. 34.
    Model Code 2010-Final draft (2012) The international federation for structural concrete, FIB. Bulletin No 52 Fib, 2; LausanneGoogle Scholar
  35. 35.
    Sagoe-Crentsil Brown T, Taylor AH (2001) Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cem Concr Res 31:707–712CrossRefGoogle Scholar
  36. 36.
    Mas B, Cladera A, del Olmo T, Pitarch F (2012) Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use. Constr Build Mater 27:612–622. doi: 10.1016/j.conbuildmat.2011.06.073 CrossRefGoogle Scholar
  37. 37.
    Cairns J, Plizzari A (2003) Towards a harmonised European bond test. Mater Struct 36:498–506. ISSN 1359-5997/03Google Scholar
  38. 38.
    Khandaker M, Hossain A (2008) Bond characteristics of plain and deformed bars in lightweight pumice concrete. Constr Build Mater 22:1491–1499. doi: 10.1016/j.conbuildmat.2007.03.025 CrossRefGoogle Scholar
  39. 39.
    ACHE (2000) Armaduras pasivas en la Instrucción EHE. Comisión 2, Grupo de Trabajo 2/1—Armaduras, Monografía M-1Google Scholar
  40. 40.
    Orangun CO (1977) Re-evaluation of test data on development length and splices. Proc ACI J 74:114–122Google Scholar
  41. 41.
    MacGregor JG (1997) Reinforced concrete, 3rd edn. Prentice-Hall, New Jersey, pp 290–301Google Scholar
  42. 42.
    ACI 318-08 (2008) Building code requirements for structural concrete and commentary. American Concrete Institute; Farmington HillsGoogle Scholar
  43. 43.
    European Committee for Standardization—CEN (2004) Eurocode 2: design of concrete structures. BrusselsGoogle Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • Sindy Seara-Paz
    • 1
    Email author
  • Belén González-Fonteboa
    • 2
  • Javier Eiras-López
    • 2
  • Manuel F. Herrador
    • 2
  1. 1.School of Building Engineering, Department of Construction TechnologyUniversity of A CoruñaLa CoruñaSpain
  2. 2.School of Civil Engineering, Department of Construction TechnologyUniversity of A CoruñaLa CoruñaSpain

Personalised recommendations