Materials and Structures

, Volume 45, Issue 10, pp 1447–1463 | Cite as

Durability of strain-hardening cement-based composites (SHCC)

  • Gideon P. A. G. van Zijl
  • Folker H. Wittmann
  • Byung H. Oh
  • Petr Kabele
  • Romildo D. Toledo Filho
  • Eduardo M. R. Fairbairn
  • Volker Slowik
  • Atsuhisa Ogawa
  • Hideki Hoshiro
  • Viktor Mechtcherine
  • Frank Altmann
  • Michael D. Lepech
Original Article

Abstract

Strain-hardening cement-based composites were named after their ability to resist increased tensile force after crack formation, over a significant tensile deformation range. The increased resistance is achieved through effective crack bridging by fibres, across multiple cracks of widths in the micro-range. Whether these small crack widths are maintained under sustained, cyclic or other load paths, and whether the crack width limitation translates into durability through retardation of moisture, gas and other deleterious matter ingress, are scrutinised in this paper by evaluation of test results from several laboratories internationally. This contribution is a short version of the State-of-the-Art report by RILEM TC 208-HFC, Subcommittee 2: Durability, developed during the committee life 2005–2009.

Keywords

Durability Strain-hardening Fibre-reinforced Cracking 

References

  1. 1.
    Li VC (1998) Engineered cementitious composite (ECC)-tailored composites through micromechanical modelling. In: Banthia N, Bentur A, Mufti A (eds) Fiber Reinforced Concrete: Present and the Future, Canadian Society for Civil Engineering, Montreal, pp 64–97Google Scholar
  2. 2.
    Li VC, Stang H (2004) Elevating FRC material ductility to infrastructure durability. In: Proceedings of RILEM PRO 39, BEFIB 6, pp 171–186Google Scholar
  3. 3.
    Wang S, Li VC (2006) Polyvinyl alcohol fiber reinforced engineered cementitious composites: material design and performances. RILEM PRO 49. Honolulu, HawaiiGoogle Scholar
  4. 4.
    Van Zijl GPAG (2008) Mechanisms of creep in fibre-reinforced strain-hardening cement composites (SHCC), CONCREEP8, Ise-Shima, Japan, pp 753–760Google Scholar
  5. 5.
    Ductal® http://www.ductal-lafarge.com, Accessed 2007
  6. 6.
    Richard P, Cheyrezy M (1995) Composition of reactive powder concretes. Cem Concr Res 25(7):1501–1511CrossRefGoogle Scholar
  7. 7.
    Rossi P (2000) Ultra-high performance fiber reinforced concrete (UHPFRC): an overview, RILEM PRO 15, BEFIB5, pp 87–100Google Scholar
  8. 8.
    Wittmann FH, Van Zijl GPAG (2006) Task group B: durability of SHCC conclusions, RILEM PRO 49. Honolulu, Hawaii, pp 109–114Google Scholar
  9. 9.
    Fischer G, Li VC (2004) Effect of fiber reinforcement on the response of structural members, FRAMCOS5, Vail, Colorado, USA:831–838Google Scholar
  10. 10.
    Li VC, Wang S, Wu C (2001) Tensile strain-hardening behaviour of polyvinyl alcohol engineered cementitious composites (PVA-ECC). ACI Mater J 98:483–492Google Scholar
  11. 11.
    Weimann MB, Li VC (2003) Hygral behavior of engineered cementitious composites (ECC). Int J Restor Build Monum 9(5):513–534Google Scholar
  12. 12.
    Li VC, Mishra DK, Wu HC (1995) Matrix design for pseudo strain-hardening FRCC. Mater Struct 28:586–595CrossRefGoogle Scholar
  13. 13.
    Van Zijl GPAG (2005) The role of aggregate in HPFRCC. Concrete/Beton 110:7–13Google Scholar
  14. 14.
    Kanda T, Li VC (1999) A new micromechanics design theory for pseudo strain-hardening cementitious composite. ASCE J Eng Mech 124(4):373–381CrossRefGoogle Scholar
  15. 15.
    Peled A, Shah SP (2003) Processing effect in cementitious composites: extrusion and casting. J Mater Civil Eng 34:107–118Google Scholar
  16. 16.
    Song Gao, van Zijl GPAG (2004) Tailoring ECC for commercial application.In: Proceedings 6th Rilem Symposium on Fibre reinforced Concrete (FRC), Varenna, Italy, 1391–1400Google Scholar
  17. 17.
    Jun P, Mechtcherine V (2007) Behaviour of SHCC under repeated tensile loading, RILEM PRO 53, HPFRCC5. Mainz, Germany, pp 97–104Google Scholar
  18. 18.
    Boshoff WP (2007) Time-dependent behaviour of ECC. Dissertation, Stellenbosch UniversityGoogle Scholar
  19. 19.
    Boshoff WP, Mechtcherine V, van Zijl GPAG (2009) Characterising the time-dependent behaviour on the single fibre level of SHCC: Part 1: Mechanism of fibre pull-out creep. Cem Concr Res 39:779–786CrossRefGoogle Scholar
  20. 20.
    Boshoff WP, Mechtcherine V, van Zijl GPAG (2009) Characterising the time-dependent behaviour on the single fibre level of SHCC: Part 2: Rate effects in fibre pull-out tests. Cem Concr Res 39:787–797CrossRefGoogle Scholar
  21. 21.
    Neithalath N (2006) Analysis of moisture transport in mortars and concrete using sorption-diffusion approach. ACI Mater J 103(3):209–217Google Scholar
  22. 22.
    Bažant ZP, Najjar LJ (1971) Drying of concrete as a non-linear diffusion problem. Cem Concr Res 1:461–473CrossRefGoogle Scholar
  23. 23.
    Kunieda M, Denarié E, Brühwiler E, Nakamura H (2007) Challenges for SHCC: deformability versus matrix density, RILEM PRO 53, HPFRCC5, Mainz, Germany:31–38Google Scholar
  24. 24.
    Lepech M, Li VC (2005) Water permeability of cracked cementitious composites. In: Proceedings of ICF11, Turin, Italy, Mar. 2005, pp 113–130Google Scholar
  25. 25.
    Sahmaran M, Li M, Li VC (2007) Transport properties of engineered cementitious composites under chloride exposure. ACI Mater J 104(6):604–611Google Scholar
  26. 26.
    Tsukamoto M (1990) Tightness of fiber concrete. Darmstadt Concrete 5:215–225Google Scholar
  27. 27.
    Rapoport J, Aldea C, Shah SP, Ankenman B, Karr AF (2001) Permeability of cracked steel fiber-reinforced concrete. Technical Report Number 115, January, 2001, National Institute of Statistical SciencesGoogle Scholar
  28. 28.
    Maalej M, Ahmed SFU, Paramasivam P (2002) Corrosion durability and structural response of functionally-graded concrete beams. J Adv Concr Technol 1(3):307–316CrossRefGoogle Scholar
  29. 29.
    Miyazato S, Hiraishi Y (2005) Transport properties and steel corrosion in ductile fiber reinforced cement composites. In: Proceedings of ICF11, Turin, Italy, Mar. 2005Google Scholar
  30. 30.
    Li VC, Fischer G, Kim YY, Lepech M, Qian S, Weimann M, Wang S (2003) Durable link slabs for jointless bridge decks based on strain-hardening cementitious composites, Report for Michigan Department of Transportation RC-1438, November 2003Google Scholar
  31. 31.
    Li VC, Horikoshi T, Ogawa A, Torigoe S, Saito T (2004) Micromechanics-based durability study of polyvinyl alcohol-engineered cementitious composite. ACI Mater J 101:242–248Google Scholar
  32. 32.
    Oh BH, Shin KJ (2006) Cracking, ductility and durability characteristics of HPFRCC with various mixture proportions and fibers, RILEM PRO 49. Honolulu, HawaiiGoogle Scholar
  33. 33.
    Lepech M, Li VC (2006) Durability and long term performance of engineered cementitious composites, RILEM PRO 49. Honolulu, HawaiiGoogle Scholar
  34. 34.
    Oh BH, Jang BS (2003) Chloride diffusion analysis of concrete structures considering the effects of reinforcements. ACI Mater J 100(2):143–149Google Scholar
  35. 35.
    Oh BH, Jang SY (2003) Experimental investigation of the threshold chloride concentration for corrosion initiation in reinforced concrete structures. Mag Concr Res 55(2):117–124MathSciNetCrossRefGoogle Scholar
  36. 36.
    Oh BH, Jang SY (2004) Prediction of diffusivity of concrete based on simple analytic equations. Cem Concr Res 34(3):463–480CrossRefGoogle Scholar
  37. 37.
    Kabele P, Takeuchi S, Inaba K, Horii H (1999) Performance of engineered cementitious composites in repair and retrofit: Analytical Estimates, RILEM PRO 6, HPFRCC 3:617–627Google Scholar
  38. 38.
    Lim YM (1996) Interface fracture behavior of rehabilitated concrete infrastructures using engineered cementitious composites. Dissertation, Michigan UniversityGoogle Scholar
  39. 39.
    Sahmaran M, Li VC, Andrade C (2008) Corrosion resistance performance of steel-reinforced engineered cementitious composite beams. ACI Mater J 105(3):243–250Google Scholar
  40. 40.
    Kabele P, Novák L, Němeček J, Kopecký L (2006) Effects of chemical exposure on bond between synthetic fiber and cementitious matrix, Proc ICTRC’2006. 1st International RILEM Conference on Textile Reinforced Concrete, 6–7 September 2006, Aachen, Germany, RILEM Publications S.A.R.L, pp 91–100Google Scholar
  41. 41.
    Kabele P, Novák L, Němeček J, Pekař J (2007) Multiscale experimental investigation of deterioration of fiber-cementitious composites in aggressive environment, Proceedings of MHM 2007: Modeling of heterogeneous materials with applications in construction and biomedical engineering, 25–27 June 2007, Prague, Czech Republic, pp 270–271Google Scholar
  42. 42.
    Němeček J, Kabele P, Kopecký L, Bittnar Z (2007) Effect of chemical exposure on fiber reinforced cementitious matrix. In: Proceedings of SEMC 2007 The Third International Conference on Structural Engineering, Mechanics and Computation, 10–12 September 2007, Cape Town, South AfricaGoogle Scholar
  43. 43.
    Constantinides G, Ulm FJ (2004) The effect of two types of C-S-H on the elasticity of cement based materials: results from nanoindentation and micromechanical modelling. Cem Concr Res 34(1):67–80CrossRefGoogle Scholar
  44. 44.
    Kamali S, Garbozzi E, Prene S, Gerard B (2004) Hydrate dissolution influence on the Young’s modulus of cement pastes, FRAMCOS5. Vail, ColoradoGoogle Scholar
  45. 45.
    Němeček J, Kabele P, Kopecký L, Bittnar Z (2006) Micromechanical properties of calcium leached engineered cementitious composites, RILEM PRO 49, Honolulu, Hawaii, USA, pp 205–211Google Scholar
  46. 46.
    Horikoshi T, Ogawa A, Saito T, Hoshiro H (2006) Properties of poly vinyl alcohol fiber as reinforcing materials for cementitious composites, RILEM PRO 49. Honolulu, HawaiiGoogle Scholar
  47. 47.
    Sahmaran M, Li VC (2008) Durability of mechanically loaded engineered cementitious composites under high alkaline environment. Cem Concr Compos 30(2):72–81CrossRefGoogle Scholar
  48. 48.
    Bažant ZP, Kaplan MF (1996) Concrete at high temperatures, Material properties and mathematical models, Longman, EssexGoogle Scholar
  49. 49.
    Kalifa P, Chene G, Galle Ch (2001) High-temperature behavior of HPC with polypropylene fibers from spalling to microstructure. Cem Concr Res 31:1487–1499CrossRefGoogle Scholar
  50. 50.
    Kalifa P, Menneteau FD, Quenard D (2000) Spalling and pore pressure in HPC at high temperatures. Cem Concr Res 30:1–13CrossRefGoogle Scholar
  51. 51.
    Nishida A, Yamazaki N (1995) Study on the properties of high strength concrete with short polypropylene fiber for spalling resistance. In: Proceedings of International Conference on Concrete under Severe Conditions, CONSEC’95, Sapporo, Japan, August, E&FN Spon, London, pp 1141–1150Google Scholar
  52. 52.
    Velasco RV, Toledo Filho RD, Fairbairn EMR, Lima PRL, Neumann R (2004) Spalling and stress-strain behaviour of polypropylene fibre reinforced HPC after exposure to high temperatures. RILEM PRO 39, BEFIB6, pp 699–708Google Scholar
  53. 53.
    Chan YN, Luo X, Sun W (2000) Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800°C. Cem Concr Res 30:247–251CrossRefGoogle Scholar
  54. 54.
    Li Z, Zhou X, Shen B (2004) Fiber-cement extrudates with perlite subjected to high temperatures. J Mater Civil Eng 16(3):221–229CrossRefGoogle Scholar
  55. 55.
    Poon CS, Shui ZH, Lam L (2004) Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cem Concr Res 34:2215–2222CrossRefGoogle Scholar
  56. 56.
    Yoshitake I, Baba K, Ito T, Nakagawa K (2006) Behavior of fiber reinforced concrete under fire temperature, RILEM PRO 49. Honolulu, HawaiiGoogle Scholar
  57. 57.
    Ogawa A, Hitomi Y, Hoshiro H (2006) PVA-fibre reinforced high performance cement board, RILEM PRO 49. Honolulu, HawaiiGoogle Scholar
  58. 58.
    Sahmaran M, Li VC (2007) De-icing salt scaling resistance of mechanically loaded engineered cementitious composites. Cem Concr Res 37(7):1035–1046CrossRefGoogle Scholar
  59. 59.
    Setzer MJ, Fagerlund G, Jansen DJ (1996) CDF test: test method for the freeze-thaw resistance of concrete: tests with sodium chloride (CDF), RILEM Recommendation, TC 117-FDC: freeze-thaw and deicing resistance of concrete. Mater Struct 29(193):523–528CrossRefGoogle Scholar
  60. 60.
    Setzer MJ, Auberg R (1995) Freeze-thaw and deicing salt resistance of concrete testing by the CDF method: CDF resistance limit and evaluation of precision. Mater Struct 28(175):16–31CrossRefGoogle Scholar
  61. 61.
    Zhao T, Wittmann F, Ueda T (eds) (2005) Durability of reinforced concrete under combined mechanical and climatic loads. Aedificatio Publishers, FreiburgGoogle Scholar
  62. 62.
    Wittmann FH, Zhang P, Zhao T (2006) Influence of combined environmental loads on durability of reinforced concrete structures. Int J Restor Buildings Monum 12(4):349–361Google Scholar
  63. 63.
    Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–781Google Scholar
  64. 64.
    Van Zijl GPAG, Wittmann FH (eds, 2009) Durability of strain-hardening fibre-reinforced cement-based composites (SHCC): State-of-the-art. RILEM TC 208-HFC Subcommittee 2 Report, Springer, submitted for publicationGoogle Scholar
  65. 65.
    Lepech MD, Li VC (2009) Application of ECC for bridge deck link slabs. Mater Struct 42:1185–1195CrossRefGoogle Scholar
  66. 66.
    Qian S, Li VC, Han Zhang, Keolaian GA (2008) Durable and sustainable overlay with ECC. In: Proceedings of 9th International Conferance Concrete Pavements, San Francisco, California, August 17–21, 2008Google Scholar

Copyright information

© RILEM 2012

Authors and Affiliations

  • Gideon P. A. G. van Zijl
    • 9
  • Folker H. Wittmann
    • 1
  • Byung H. Oh
    • 2
  • Petr Kabele
    • 3
  • Romildo D. Toledo Filho
    • 4
  • Eduardo M. R. Fairbairn
    • 4
  • Volker Slowik
    • 5
  • Atsuhisa Ogawa
    • 6
  • Hideki Hoshiro
    • 6
  • Viktor Mechtcherine
    • 7
  • Frank Altmann
    • 7
  • Michael D. Lepech
    • 8
  1. 1.Aedificat Institute FreiburgFreiburgGermany
  2. 2.Seoul National UniversitySeoulKorea
  3. 3.Czech Technical UniversityPragueCzech Republic
  4. 4.Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  5. 5.Leipzig University of Applied SciencesLeipzigGermany
  6. 6.Kuraray Co. LtdOsakaJapan
  7. 7.Technical UniversityDresdenGermany
  8. 8.Stanford UniversityPalo AltoUSA
  9. 9.Department of Civil EngineeringStellenbosch UniversityMatielandSouth Africa

Personalised recommendations