Materials and Structures

, Volume 46, Issue 10, pp 1723–1735 | Cite as

Effect of moisture on the reliability of void detection in brickwork masonry using radar, ultrasonic and complex resistivity tomography

  • Patricia Cotic
  • Zvonko Jaglicic
  • Ernst Niederleithinger
  • Ute Effner
  • Sabine Kruschwitz
  • Christiane Trela
  • Vlatko Bosiljkov
Original Article


The influence of moisture on the reliability of detection of larger voids in brickwork masonry was investigated using three non-destructive techniques: radar, ultrasonic and complex resistivity (CR). Radar and ultrasonic travel time tomography, as well as CR tomography, were performed over a specific cross section of a specimen containing a large void at a known position to determine the influence of different levels of moisture content in the brickwork on the wave velocities and the CR magnitude. We defined a numerical estimator to quantitatively determine the void detection efficiency from the images obtained when exposing the specimen to moisture. The results showed radar to be the most reliable technique for void detection in both dry and wet masonry, while CR performed much better in detecting larger air voids in wet masonry.


Radar, ultrasonic and complex resistivity tomography Masonry Moisture Void detection 



The first author gratefully acknowledges the financial support of the Slovenian Research Agency through grant 1000-10-310156 and the Slovene Human Resources and Scholarship Fund through grant 11012-13/2011. The authors wish to thank Jens Wöstmann and Maria Grohmann for their help during the measurements.


  1. 1.
    Binda L, Saisi A (2009) Application of NDTS to the diagnosis of historic structures. In: Proceedings of the 7th international symposium on NDT in civil engineering (NDTCE 2009), p 28Google Scholar
  2. 2.
    Binda L, Lenzi G, Saisi A (1998) NDE of masonry structures: use of radar tests for the characterisation of stone masonries. NDT&E Int 31(6):411–419CrossRefGoogle Scholar
  3. 3.
    Binda L, Zanzi L, Lualdi M, Condoleo P (2003) Complementarity of non destructive techniques in the diagnosis of damaged historic structures. In: Proceedings of the international conference on structural faults and repair, p 9Google Scholar
  4. 4.
    Binda L, Saisi A, Zanzi L (2003) Sonic tomography and flat-jack tests as complementary investigation procedures for the stone pillars of the temple of S. Nicolo l’Arena (Italy). NDT&E Int 36(4):215–227CrossRefGoogle Scholar
  5. 5.
    Binda L, Bosiljkov V, Saisi A, Zanzi L (2006) Guidelines for the diagnostic investigation of historic buildings. In: Proceedings of the 7th international masonry conference: London 2006 (Proceedings of the British Masonry Society, No. 10)Google Scholar
  6. 6.
    Binda L, Lualdi M, Saisi A, Zanzi L (2011) Radar investigation as a complementary tool for the diagnosis of historic masonry buildings. Int J Mater Struct Integr 5(1):1–25Google Scholar
  7. 7.
    Camplani M, Cannas B, Carcangiu S, Concu G, Fanni A, Montisci A, Mulas M (2008) Acoustic tomography for non destructive testing of stone masonry. In: Oea G (ed) ICCSA 2008, part II, LNCS 5073. Springer, Berlin, pp 596–605Google Scholar
  8. 8.
    Colla C, Das P, McCann D, Forde M (1997) Sonic, electromagnetic and impulse radar investigation of stone masonry bridges. NDT&E Int 30(4):249–254CrossRefGoogle Scholar
  9. 9.
    Dyer B, Worthington M (1988) Some sources of distortion in tomographic velocity images. Geophys Prospect 36(3):209–222CrossRefGoogle Scholar
  10. 10.
    Flint R, Jackson P, McCann D (1999) Geophysical imaging inside masonry structures. NDT&E Int 32(8):469–479CrossRefGoogle Scholar
  11. 11.
    Günther T, Rücker C (2008) WallBERT, Version 0.9. BenutzerhandbuchGoogle Scholar
  12. 12.
    Jol H (ed) (2009) Ground penetrating radar: theory and applications. Elsevier Science, AmsterdamGoogle Scholar
  13. 13.
    Kong F, By TL (1995) Radar tomography for non-destructive testing. In: Proceedings of the international symposium on NDT in civil engineering (NDT-CE), Berlin, pp 681–688Google Scholar
  14. 14.
    Kruschwitz S, Niederleithinger E, Trela C, Wöstmann J (2010) Complex resistivity and radar investigation of building material: first results of field scale measurements. Acta Geophys 58(1):96–113CrossRefGoogle Scholar
  15. 15.
    Loke M (2011) Tutorial: 2-D and 3-D electrical imaging surveys. p 148. Accessed 7 April 2011
  16. 16.
    Maeda N (1985) A method for reading and checking phase times in auto-processing system of seismic wave data. J Seismol Soc Jpn 38:365–379Google Scholar
  17. 17.
    Maierhofer C, Colla C (2000) Influence of moisture content on the detection of structural features in building construction using impulse radar. In: Alampali S (ed) Structural materials technology IV—an NDT conference. Technomic Publishing Co., Lancaster, pp 343–349Google Scholar
  18. 18.
    Maierhofer C, Leipold S (2001) Radar investigation of masonry structures. NDT&E Int 34(2):139–147CrossRefGoogle Scholar
  19. 19.
    Maierhofer C, Roellig M (2009) Active thermography for the characterization of surfaces and interfaces of historic masonry structures. In: Proceedings of the 7th international symposium on NDT in civil engineering (NDTCE 2009), p 6Google Scholar
  20. 20.
    Sadri A (2003) Application of impact-echo technique in diagnoses and repair of stone masonry structures. NDT&E Int 36(4):195–202CrossRefGoogle Scholar
  21. 21.
    Sandmeier K (2004) Reflexw, Version 3.5, instruction manual for processing of seismic, acoustic or electromagnetic reflection, refraction and transmission dataGoogle Scholar
  22. 22.
    Schuller M, Berra M, Atkinson R, Binda L (1997) Acoustic tomography for evaluation of unreinforced masonry. Constr Build Mater 11(3):199–204CrossRefGoogle Scholar
  23. 23.
    Schuster G (1996) Resolution limits for crosswell migration and traveltime tomography. Geophys J Int 127(2):427–440CrossRefGoogle Scholar
  24. 24.
    Tronicke J (2007) The influence of high frequency uncorrelated noise on first-break arrival times and crosshole traveltime tomography. J Environ Eng Geophys 12(2):173–184CrossRefGoogle Scholar
  25. 25.
    Tronicke J, Dietrich P, Appel E (2002) Quality improvement of crosshole georadar tomography: pre- and post-inversion data analysis strategies. Eur J Environ Eng Geophys 7:59–73Google Scholar
  26. 26.
    Tweeton D (2001) GEOTOMCG, instruction manual for the three dimensional tomography programGoogle Scholar
  27. 27.
    Valle S, Zanzi L, Rocca F (1999) Radar tomography for NDT: comparison of techniques. J Appl Geophys 41(2–3):259–269CrossRefGoogle Scholar
  28. 28.
    Wendrich A, Trela C, Krause M, Maierhofer C, Effner U, Wöstmann J (2006) Location of voids in masonry structures by using radar and ultrasonic traveltime tomography. In: Proceedings of the 9th European NDT conference (ECNDT 2006), Berlin, vol 11, p 11Google Scholar

Copyright information

© RILEM 2013

Authors and Affiliations

  • Patricia Cotic
    • 1
    • 2
  • Zvonko Jaglicic
    • 1
    • 2
  • Ernst Niederleithinger
    • 3
  • Ute Effner
    • 3
  • Sabine Kruschwitz
    • 3
  • Christiane Trela
    • 3
  • Vlatko Bosiljkov
    • 2
  1. 1.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia
  2. 2.Faculty of Civil and Geodetic EngineeringUniversity of LjubljanaLjubljanaSlovenia
  3. 3.BAM Federal Institute for Materials Research and TestingBerlinGermany

Personalised recommendations