Advertisement

Materials and Structures

, Volume 44, Issue 2, pp 437–453 | Cite as

Improvement of the early-age reactivity of fly ash and blast furnace slag cementitious systems using limestone filler

  • Pierre MounangaEmail author
  • Muhammad Irfan Ahmad Khokhar
  • Rana El Hachem
  • Ahmed Loukili
Original Article

Abstract

This article analyzes the effects of the addition of limestone filler on the hydration rate, setting times and early-age mechanical properties of binary and ternary-binder mortars containing Portland cement, blast furnace slag (BFS) and fly ash (FA), with various substitution rates of cement with mineral additions going up to 50%. Vicat needle penetration tests and measurements of heat flow of reaction, compressive strength and dynamic Young’s modulus were carried out on 14 mortars prepared with binary and ternary binders, at 20°C. The results obtained on the mortars containing binary binders, show that their loss of mechanical strength at early age is not caused by a deceleration of the reactions of cement in the presence of mineral additions, but is mainly explained by the dilution effect related to the reduction in cement content. A moderate addition of limestone filler (8–17%) makes it possible to obtain ternary binders with early-age reactivity equal or even higher than that of Portland cement, and with 28-days mechanical resistance close to those of the binary-binder mortars. This accelerating effect of limestone filler is particularly sensitive in the case of mortars containing FA.

Keywords

Granulated blast-furnace slag Fly ash Limestone filler Binary and ternary binders Early-age reactivity 

Notes

Acknowledgments

This study was achieved in the framework of the research project ANR/RGCU ECO2BETON. The authors would like to extend their appreciation and gratitude for the financial support provided by the National Research Agency. The authors are also grateful to Naim Joubran, for his assistance in conducting the isothermal microcalorimetry tests.

References

  1. 1.
    Glavind M, Damtoft JS, Röttig S (2001) Cleaner technology solutions in the life cycle of concrete products. In: Malhotra M (ed) Proceedings of CANMET/ACI international conference on sustainable development and concrete technology. San Francisco, CAGoogle Scholar
  2. 2.
    Damtoft JS, Lukasik J, Herfort D, Sorrentino D, Gartner EM (2008) Sustainable development and climate change initiatives. Cem Concr Res 38(2):115–127. doi: 10.1016/j.cemconres.2007.09.008 CrossRefGoogle Scholar
  3. 3.
    Aïtcin PC (2000) Cements of yesterday and today: concrete of tomorrow. Cem Concr Res 30(9):1349–1359. doi: 10.1016/S0008-8846(00)00365-3 CrossRefGoogle Scholar
  4. 4.
    Mehta PK (2001) Reducing the environmental impact of concrete. Concr Int 23(10):61–66Google Scholar
  5. 5.
    Malhotra VM (2006) Reducing CO2 emissions. Concr Int 28(9):42–45Google Scholar
  6. 6.
    Brooks JJ, Megat Johari MA, Mazloom M (2000) Effect of admixtures on the setting times of high-strength concrete. Cem Concr Comp 22(4):293–301. doi: 10.1016/S0958-9465(00)00025-1 CrossRefGoogle Scholar
  7. 7.
    Bilodeau A, Malhotra VM (2000) High-volume fly ash system: concrete solution for sustainable development. ACI Mater J 97(1):41–50Google Scholar
  8. 8.
    Wang H, Qi C, Farzam H, Turici J (2006) Interaction of materials used in concrete. Concr Int 28(4):47–52zbMATHGoogle Scholar
  9. 9.
    Sekulić Ž, Popov S, Ðuričić M, Rosić A (1999) Mechanical activation of cement with addition of fly ash. Mater Lett 39:115–121. doi: 10.1016/S0167-577X(98)00226-2 CrossRefGoogle Scholar
  10. 10.
    Kumar S, Kumar R, Bandopadhyay A, Alex TC, Ravi Kumar B, Das SK, Mehrotra SP (2008) Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of Portland slag cement. Cem Concr Res 30(8):679–685. doi: 10.1016/j.cemconcomp.2008.05.005 CrossRefGoogle Scholar
  11. 11.
    Bougara A, Lynsdale C, Ezziane K (2009) Activation of Algerian slag in mortars. Constr Build Mater 23(1):542–547. doi: 10.1016/j.conbuildmat.2007.10.012 CrossRefGoogle Scholar
  12. 12.
    Qian J, Shi C, Wang Z (2001) Activation of blended cements containing fly ash. Cem Concr Res 31(8):1121–1127. doi: 10.1016/S0008-8846(01)00526-9 CrossRefGoogle Scholar
  13. 13.
    Sobolev K (2005) Mechano-chemical modification of cement with high volumes of blast furnace slag. Cem Concr Comp 27(7–8):848–853. doi: 10.1016/j.cemconcomp.2005.03.010 CrossRefGoogle Scholar
  14. 14.
    Poon CS, Kou SC, Lam L, Lin ZS (2001) Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4). Cem Concr Res 31(6):873–881. doi: 10.1016/S0008-8846(01)00478-1 CrossRefGoogle Scholar
  15. 15.
    Shi C (1998) Pozzolanic reaction and microstructure development of activated lime–fly ash pastes. ACI Mater J 95(5):537–545Google Scholar
  16. 16.
    Aimin X, Sarkar SL (1991) Microstructural study of gypsum activated fly ash hydration in cement paste. Cem Concr Res 21(6):1137–1147. doi: 10.1016/0008-8846(91)90074-R CrossRefGoogle Scholar
  17. 17.
    Ramezanianpour AA, Malhotra VM (1995) Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cem Concr Comp 17(2):125–133. doi: 10.1016/0958-9465(95)00005-W CrossRefGoogle Scholar
  18. 18.
    Barnett SJ, Soutsos MN, Millard SG, Bungey JH (2006) Strength development of mortars containing ground granulated blast-furnace slag: effect of curing temperature and determination of apparent activation energies. Cem Concr Res 36(3):434–440. doi: 10.1016/j.cemconres.2005.11.002 CrossRefGoogle Scholar
  19. 19.
    Escalante-Garcia JI, Sharp JH (2001) The microstructure and mechanical properties of blended cements hydrated at various temperatures. Cem Concr Res 31(5):695–702. doi: 10.1016/S0008-8846(01)00471-9 CrossRefGoogle Scholar
  20. 20.
    Schindler AK (2004) Effect of temperature on hydration of cementitious materials. ACI Mater J 101(9):72–81Google Scholar
  21. 21.
    Zhao FQ, Ni W, Wang HJ, Liu HJ (2007) Activated fly ash/slag blended cement. Resour Conserv Recycl 52(2):303–313. doi: 10.1016/j.resconrec.2007.04.002 CrossRefGoogle Scholar
  22. 22.
    Kadri EH, Aggoun S, De Schutter G, Ezziane K (2009) Combined effect of chemical nature and fineness of mineral powders on Portland cement hydration. Mater Struct 43(5):665–673. doi: 10.1617/s11527-009-9519-6 CrossRefGoogle Scholar
  23. 23.
    Bonavetti VL, Rahhal VF, Irassar EF (2001) Studies on the carboaluminate formation in limestone filler-blended cements. Cem Concr Res 31(6):853–859. doi: 10.1016/S0008-8846(01)00491-4 CrossRefGoogle Scholar
  24. 24.
    Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38(6):848–860. doi: 10.1016/j.cemconres.2008.01.002 CrossRefGoogle Scholar
  25. 25.
    Bonavetti V, Donza H, Menéndez G, Cabrera O, Irassar EF (2003) Limestone filler cement in low w/c concrete: a rational use of energy. Cem Concr Res 33(6):865–871. doi: 10.1016/S0008-8846(02)01087-6 CrossRefGoogle Scholar
  26. 26.
    Menéndez G, Bonavetti V, Irassar EF (2003) Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cem Concr Comp 25(1):61–67. doi: 10.1016/S0958-9465(01)00056-7 CrossRefGoogle Scholar
  27. 27.
    Carrasco MF, Menéndez G, Bonavetti V, Irassar EF (2005) Strength optimization of “tailor-made cement” with limestone filler and blast furnace slag. Cem Concr Res 35(7):1324–1331. doi: 10.1016/j.cemconres.2004.09.023 CrossRefGoogle Scholar
  28. 28.
    Güneyisi E, Gesoğlu M (2008) Properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and metakaolin. Mater Struct 41(9):1519–1531. doi: 10.1617/s11527-007-9345-7 CrossRefGoogle Scholar
  29. 29.
    Snelson DG, Wild S, O’Farrell M (2008) Heat of hydration of Portland cement–metakaolin–fly ash (PC–MK–PFA) blends. Cem Concr Res 38(6):832–840. doi: 10.1016/j.cemconres.2008.01.004 CrossRefGoogle Scholar
  30. 30.
    Spinner S, Tefft WE (1961) A method for determining mechanical resonance frequencies and for calculating elastic moduli from these frequencies. Proc ASTM 61:1221–1238Google Scholar
  31. 31.
    Torrenti JM, Benboudjema F (2005) Mechanical threshold of cementitious materials at early age. Mater Struct 38(3):299–304. doi: 10.1007/BF02479294 CrossRefGoogle Scholar
  32. 32.
    Eren O, Brooks JJ, Celik T (1995) Setting of fly ash and slag-cement concrete as affected by curing temperature. Cem Concr Aggr 17(1):11–17CrossRefGoogle Scholar
  33. 33.
    Ravina D (1997) Properties of fresh concrete incorporating a high volume of fly ash as partial fine sand replacement. Mater Struct 30(8):473–479. doi: 10.1007/BF02524775 CrossRefGoogle Scholar
  34. 34.
    Gesoğlu M, Özbay E (2007) Effects of mineral admixtures on fresh and hardened properties of self-compacting concretes: binary, ternary and quaternary systems. Mater Struct 40(9):923–937. doi: 10.1617/s11527-007-9242-0 CrossRefGoogle Scholar
  35. 35.
    Rahhal V, Talero R (2004) Influence of two different fly ashes on the hydration of Portland cements. J Therm Anal Calorim 78(1):191–205. doi: 10.1023/B:JTAN.0000042167.46181.17 CrossRefGoogle Scholar
  36. 36.
    Şahmaran M, Christianto HA, Yaman IÖ (2006) The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars. Cem Concr Comp 28(5):432–440. doi: 10.1016/j.cemconcomp.2005.12.003 CrossRefGoogle Scholar
  37. 37.
    Escalante-Garcia JI, Sharp JH (1998) Effects of temperature on the hydration of the main clinker phases in Portland cement: part II, blended cements. Cem Concr Res 28:1259–1274. doi: 10.1016/S0008-8846(98)00107-0 CrossRefGoogle Scholar
  38. 38.
    Zhou J, Ye K, van Breugel K (2006) Hydration of Portland cement blended with blast furnace slag at early stage. In: 2nd international symposium on advances in concrete science and engineering, Quebec City, Canada. RILEM Publications (on CD)Google Scholar
  39. 39.
    Ballim Y, Graham PC (2009) The effects of supplementary cementing materials in modifying the heat of hydration of concrete. Mater Struct 42(6):803–811. doi: 10.1617/s11527-008-9425-3 CrossRefGoogle Scholar
  40. 40.
    De Schutter G, Taerwe L (1995) General hydration model for Portland cement and blast furnace slag cement. Cem Concr Res 25(3):593–604. doi: 10.1016/0008-8846(95)00048-H CrossRefGoogle Scholar
  41. 41.
    Cyr M, Lawrence P, Ringot E (2006) Efficiency of mineral admixtures in mortars: quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cem Concr Res 36(2):264–277. doi: 10.1016/j.cemconres.2005.07.001 CrossRefGoogle Scholar
  42. 42.
    Poppe AM, De Schutter G (2005) Cement hydration in the presence of high filler contents. Cem Concr Res 35(12):2290–2299. doi: 10.1016/j.cemconres.2005.03.008 CrossRefGoogle Scholar
  43. 43.
    Bouasker M, Mounanga P, Turcry P, Loukili A, Khelidj A (2008) Chemical shrinkage of cement pastes and mortars at very early age: effect of limestone filler and granular inclusions. Cem Concr Comp 30(1):13–22. doi: 10.1016/j.cemconcomp.2007.06.004 CrossRefGoogle Scholar
  44. 44.
    Schindler AK, Folliard KJ (2005) Heat of hydration models for cementitious materials. ACI Mater J 102(1):24–33Google Scholar
  45. 45.
    Pacewska B, Blonkowski G, Wilińska I (2006) Investigations of the influence of different fly ashes on cement hydration. J Therm Anal Calorim 86(1):179–186. doi: 10.1007/s10673-005-7136-7 CrossRefGoogle Scholar
  46. 46.
    McCarthy MJ, Dhir RK (2005) Development of high volume fly ash cements for use in concrete construction. Fuel 84(11):1423–1432. doi: 10.1016/j.fuel.2004.08.029 CrossRefGoogle Scholar
  47. 47.
    Bentur A (2000) Early age shrinkage and cracking in cementitious systems. Actes du congrès RILEM Shrinkage. In: Baroghel-Bouny V et Aïtcin P-C (Ed. par). RILEM, Paris, pp 1–20Google Scholar
  48. 48.
    Pipilikaki P, Katsioti M (2009) Study of the hydration process of quaternary blended cements and durability of the produced mortars and concretes. Constr Build Mater 23(6):2246–2250. doi: 10.1016/j.conbuildmat.2008.11.015 CrossRefGoogle Scholar
  49. 49.
    Byfors J (1980) Plain concrete at early ages. Swedish Cement and Concrete Research Institute, StockholmGoogle Scholar
  50. 50.
    Regourd M, Gautier E (1980) Comportement des ciments soumis au durcissement accéléré. Annales de l’Institut du Bâtiment et des Travaux Publics 387:83–96Google Scholar
  51. 51.
    Khokhar MIA, Roziere E, Turcry P, Grondin F, Loukili A (2010) Mix design of concrete with high content of mineral additions: optimisation to improve early age strength. Cem Concr Comp 32(5):377–385. doi: 10.1016/j.cemconcomp.2010.01.006 CrossRefGoogle Scholar

Copyright information

© RILEM 2010

Authors and Affiliations

  • Pierre Mounanga
    • 1
    Email author
  • Muhammad Irfan Ahmad Khokhar
    • 2
  • Rana El Hachem
    • 2
  • Ahmed Loukili
    • 2
  1. 1.GeM, UMR CNRS 6183—Research Institute on Civil Engineering and MechanicsUniversity of Nantes—IUT Saint-NazaireSaint-Nazaire CedexFrance
  2. 2.GeM, UMR CNRS 6183—Research Institute on Civil Engineering and MechanicsCentrale NantesNantes Cedex 3France

Personalised recommendations