Advertisement

Materials and Structures

, Volume 42, Issue 9, pp 1261–1281 | Cite as

Fibre reinforced concrete: new design perspectives

  • Marco di Prisco
  • Giovanni Plizzari
  • Lucie Vandewalle
Original Article

Abstract

Although the use of Fibre Reinforced Concrete (FRC) for structural applications is continuously increasing, it is still limited with respect to its potentials, mainly due to the lack of International Building Codes for FRC structural elements. Within fib (Féderation Internationale du Béton), the Special Activity Group 5 is preparing a New fib Model Code that aims to update the previous CEB-FIP Model Code 90, published in 1993, that can be considered as the reference document for Eurocode 2. The New Model Code includes several innovations and addresses among other topics, new materials for structural design. In this respect, FRC will be introduced. The Technical Groups fib TG 8.3 “Fibre reinforced concrete” and fib TG 8.6 “Ultra high performance FRC” are preparing some sections of the New Model Code, including regular and high performance FRC. This paper aims to briefly explain the main concepts behind the structural rules for FRC structural design.

Keywords

Fibre Reinforced Concrete Constitutive laws Safety factors Characteristic length Structural behavior Redundancy Structural design 

Notes

Acknowledgements

A special acknowledgement goes to Prof. Joost Walraven for the fruitful discussions and to Prof. Falkner who shared its large design experience. The Authors are also grateful to all the members of fib Task Groups TG 8.3 and TG 8.6 for the constructive discussions during the several meetings where many ideas presented in this paper took a definitive shape.

References

  1. 1.
    Rossi P, Chanvillard G (eds) (2000) Fibre Reinforced Concretes. In: RILEM Proceedings of the 5th RILEM Symposium (BEFIB 2000), PRO15, BEFIB 2000. RILEM Publications S.A.R.L., Bagneux, FranceGoogle Scholar
  2. 2.
    di Prisco M, Felicetti R, Plizzari G (eds) (2004) Fibre-Reinforced Concrete. In: RILEM Proceedings of the 6th RILEM Symposium (BEFIB 2004), PRO39, BEFIB 2004. RILEM Publications S.A.R.L., Bagneux, FranceGoogle Scholar
  3. 3.
    Reinhardt HW, Naaman AE (eds) (2007) High Performance Fibre Reinforced Cement Composites (HPFRCC5). Rilem Publication S.A.R.L., PRO53Google Scholar
  4. 4.
    Gettu R (ed) (2008) Fibre Reinforced Concrete: design and applications, BEFIB 2008, Bagneux, France, RILEM Publications S.A.R.L., PRO60Google Scholar
  5. 5.
    ACI Committee 544 (1996) Design considerations for steel Fiber Reinforced Concrete, ACI 544.4R-88. American Concrete Institute, ACI Farmington HillsGoogle Scholar
  6. 6.
    ACI Committee 318 (2008) Building code and commentary, Report ACI 318-08/318R-08. American Concrete Institute, Farmington HillsGoogle Scholar
  7. 7.
    Vandewalle L et al (2002) Recommendation of Rilem TC162-TDF: test and design methods for steel fibre reinforced concrete: design of steel fibre reinforced concrete using the σw method: principles and applications. Mater Struct 35:262–278Google Scholar
  8. 8.
    Vandewalle L et al (2003) Recommendation of Rilem TC162-TDF: test and design methods for steel fibre reinforced concrete: σε-design method (final recommendation). Mater Struct 36:560–567Google Scholar
  9. 9.
    AFGC-SETRA (2002) Ultra High Performance Fibre-Reinforced Concretes, Interim recommendations. AFGC Publication, FranceGoogle Scholar
  10. 10.
    Stälfiberbetong (1995) rekommendationer för konstruction, utförande och provning Betongrapport n.4. Svenska Betongföreningen, BetongrapportGoogle Scholar
  11. 11.
    Deutscher Ausschuss für Stahlbeton (DAfStb) (2007) Guidelines for steel fiber reinforced concrete—23th Draft—richtlinie Stahlfaserbeton—DIN 1045 Annex parts 1–4, August 2007Google Scholar
  12. 12.
    Faserbeton R (2002) Osterreichische Vereinigung für Beton-und Bautechnik. ÖBBV, WienGoogle Scholar
  13. 13.
    CNR-DT 204 (2006) Guidelines for design, construction and production control of fiber reinforced concrete structures. National Research Council of Italy, ItalyGoogle Scholar
  14. 14.
    Vandewalle L (2000) Cracking behaviour of concrete beams reinforced with a combination of ordinary reinforcement and steel fibers. Mater Struct 33(227):164–170CrossRefMathSciNetGoogle Scholar
  15. 15.
    UNI EN 206-1 (2006) Concrete—part 1: specification, performance, production and conformity. CEN, BrusselsGoogle Scholar
  16. 16.
    Hordijk DA (1991) Local approach to fatigue of concrete. Dissertation, Delft University of TechnologyGoogle Scholar
  17. 17.
    Naaman AE, Reinhardt HW (2003) High performance fiber reinforced cement composites—HPFRCC4. In: RILEM Proceedings, PRO 30, RILEM Publications S.A.R.L., Bagneaux, FranceGoogle Scholar
  18. 18.
    EN 14651 (2004) Test method for metallic fibre concrete—measuring the flexural tensile strength (limit of proportionality, residual). Varenna, ItalyGoogle Scholar
  19. 19.
    di Prisco M, Colombo M, Dozio D, Mauri M (2006) SFRC ground slab: an experience on hollow core slabs. In: Proceedings of the 16th national conference (CTE ’06), Parma, 2006, pp. 965–978 (in Italian)Google Scholar
  20. 20.
    UNI 11039 (2003) Concrete reinforced with steel fibres. Part II: test method for the determination of first cracking strength and ductility indexes. Italian Board for Standardization, ItalyGoogle Scholar
  21. 21.
    di Prisco M, Dozio D (2008) Post-tensioned SFRC beams in Fibre Reinforced Concrete: design and applications. In: di Prisco et al (eds) Proceedings of the 8th RILEM Symposium (BEFIB 08). RILEM Publications S.A.R.L., Bagneux, France, pp 899–910Google Scholar
  22. 22.
    di Prisco C, di Prisco M, Mauri M, Scola M (2006) A new design for stabilizing ground slopes. In: Proceedings of the 2nd fib congress, Napoli (Italy), June 5–8, 2006, ID 4-1 on CD-ROMGoogle Scholar
  23. 23.
    di Prisco M, di Prisco C, Dozio D, Galli A, Lapolla S (2008) Assessment and control of a SFRC retaining structure: mechanical issues. In: Binda et al (eds) On site assessment of concrete, masonry and timber structures. Proceedings of the international conference (SACOMATIS). RILEM Publications S.A.R.L., Bagneux, France, PRO 59, Varenna, vol 1, pp 539–604Google Scholar
  24. 24.
    di Prisco M, Lamperti M, Lapolla S, Khurana RS (2008) HPFRCC thin plates for precast roofing. In: Proceedings of second international symposium on ultra high performance concrete, Kassel, Germany, 2008, pp 675–682Google Scholar
  25. 25.
    UNI 11188 (2004) Design, production and control of Steel Fibre Reinforced structural elements. Italian Board of Standardization, ItalyGoogle Scholar
  26. 26.
    Ferrara L, Dozio D, di Prisco M (2007) On the connections between fresh state behavior, fiber dispersion and toughness properties of steel fiber reinforced concrete. In: Reinhardt HW, Naaman AE (eds) High Performance Fiber Reinforced Cement Composites (HPFRCC5). Proceedings of the 5th international RILEM Workshop, Mainz, Germany, PRO 53. RILEM Publication SARL, pp 249–258Google Scholar
  27. 27.
    di Prisco M, Colombo M (2006) FRC and HPFRC composites: from constitutive behaviour to structural applications, in Measuring, monitoring, and modelling concrete properties. In: Konsta-Gdoutos MS (ed) Proceedings of the international symposium dedicated to Prof. S. P. Shah, Alexandroupolis (Greece). Springer, Dordrecht, pp 59–68Google Scholar
  28. 28.
    Cominoli L (2007) “Studio sul calcestruzzo fibrorinforzato per applicazioni industriali: dalle proprietà del materiale al comportamento strutturale”, Ph.D. Thesis, University of Brescia (ISBN 978-88-96225-10-3), 431 ppGoogle Scholar
  29. 29.
    Stahli P, van Mier JGM (2007) Manufacturing, fibre anisotropy and fracture of hybrid fibre concrete. Eng Fract Mech 74:223–242CrossRefGoogle Scholar
  30. 30.
    Stahli P, Custer R, van Mier JGM (2008) On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Mater Struct 41(1):189–196CrossRefGoogle Scholar
  31. 31.
    Lambrechts AN (2004) The variation of steel fibre reinforced concrete characteristics. Study on toughness results 2002–2003. In: di Prisco et al (eds) Fiber Reinforced Concrete: from theory to practice. International workshop on advances in Fiber Reinforced Concrete. Starrylink Editrice, Brescia, Italy, pp 135–148Google Scholar
  32. 32.
    Minelli F, Plizzari G (2007) Fiber reinforced concrete characterization: round panel vs. beam test toward a harmonization. In: Proceedings of 3rd central European congress on Concrete Engineering, Visegrád, Hungary. September 17–18. Publishing Company of Budapest University of Technology – Hungary, Budapest, 2007, pp 213–220Google Scholar
  33. 33.
    di Prisco M, Failla C, Plizzari GA, Toniolo G (2004) Italian guidelines on SFRC. In: di Prisco M et al (eds) Fiber-Reinforced Concrete: from theory to practice. Starrylink, Bergamo, pp 39–72Google Scholar
  34. 34.
    Dozio D (2008) SFRC structures: identification of the uniaxial tension characteristic constitutive law. Department of Structural Engineering, Politecnico di Milano, MilanoGoogle Scholar
  35. 35.
    Bazant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mater Struct 16(93):155–177Google Scholar
  36. 36.
    Bazant ZP, Cedolin L (1983) Finite element modeling of crack band propagation. ASCE J Struct Eng 109(1):69–92CrossRefGoogle Scholar
  37. 37.
    Bazant ZP, Pijaudier-Cabot G (1988) Non-local continuum damage, localization instability and convergence. ASME J Appl Mech 55:287–293zbMATHCrossRefGoogle Scholar
  38. 38.
    Bazant ZP, Novak D (2003) Stochastic models for deformation and failure of quasibrittle structures: recent advances and new directions. In Bicanic N et al (eds) Computational modelling of concrete structures. Swets & Zeitlinger, Lisse, pp 583–598Google Scholar
  39. 39.
    de Borst R, Mulhaus HB, Pamin J, Sluys LJ (1992) Computational modeling of localization of deformation. In: Owen DRJ et al (eds) Proceedings on computational plasticity fundamentals and applications, part II. Pineridge Press, Swansea, pp 483–508Google Scholar
  40. 40.
    Fokwa D, Berthaud Y (1993) Heterogeneous materials: experimental analysis of localization and the influence of size of the heterogeneities on the behaviour in tension. Mater Struct 26:136–143CrossRefGoogle Scholar
  41. 41.
    di Prisco M, Felicetti R, Gambarova PG (1999) On the evaluation of the characteristic length in high strength concrete. In: Azizinamini A, Darwin D, French C (eds) High strength concrete. ASCE, Kona, Hawaii, pp 377–390Google Scholar
  42. 42.
    Ferrara L, di Prisco M (2001) Mode I fracture behavior in concrete: non-local damage modeling. ASCE J Eng Mech 127(7):678–692CrossRefGoogle Scholar
  43. 43.
    Kooiman AG (2000) Modelling steel fibre reinforced concrete for structural design. PhD thesis, Technical University Delft, Optima Grafische Communicatie, RotterdamGoogle Scholar
  44. 44.
    Barros JAO, Cunha VMCF, Ribeiro AF, Antunes JAB (2005) Post-cracking behaviour of steel fibre reinforced concrete. Mater Struct 38(275):47–56CrossRefGoogle Scholar
  45. 45.
    di Prisco M, Iorio F, Plizzari G (2003) HPSFRC prestressed roof elements. In: Schnütgen B, Vandewalle L (eds) Test ad design methods for steel fibre reinforced concrete—background ad experiences. PRO 31, RILEM, Bochum, Germany, pp 161–188Google Scholar
  46. 46.
    Hillerborg A, Modeer M, Peterson PE (1976) Analysis of crack formation and crack growth by means of fracture mechanics and finite elements. Cement Concr Res 6:773–782CrossRefGoogle Scholar
  47. 47.
    JSCE (2008) Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC). In: Rokugo K (ed) Concrete engineering series, p 82Google Scholar
  48. 48.
    di Prisco M, Felicetti R, Lamperti M, Menotti G (2004) On size effect in tension of SFRC thin plates. In: Li VC et al (eds) Fracture mechanics of concrete structures. BL Schmick and AD Pollington, USA, pp 1075–1082Google Scholar
  49. 49.
    di Prisco M, Ferrara L, Colombo M, Mauri M (2004) On the identification of SFRC costitutive law in uniaxial tension. In: di Prisco et al (eds) Fiber Reinforced Concrete. Proceedings of 6th RILEM symposium (BEFIB 04), PRO 39. RILEM Publications S.A.R.L., Bagneaux, France, pp 827–836Google Scholar
  50. 50.
    Colombo M (2006) FRC bending behaviour: a damage model for high temperatures. PhD thesis, Department of Structural Engineering, Politecnico di Milano, StarryLink, Brescia, ItalyGoogle Scholar
  51. 51.
    Minelli F, Plizzari G, Vecchio FJ (2007) Influence of steel fibers on full-scale RC beams under shear loading. In: High performance concrete, brick-masonry and environmental aspects. Sixth international conference of fracture mechanics of concrete and concrete structures FRAMCOS6. Taylor & Francis Group (UK), London/Catania, 3, pp 1523–1531Google Scholar

Copyright information

© RILEM 2009

Authors and Affiliations

  • Marco di Prisco
    • 1
  • Giovanni Plizzari
    • 2
  • Lucie Vandewalle
    • 3
  1. 1.Department of Structural EngineeringPolitecnico di MilanoMilanItaly
  2. 2.Department of Civil Engineering, Architecture, Land and EnvironmentUniversity of BresciaBresciaItaly
  3. 3.Department of Civil EngineeringK. U. LeuvenHeverleeBelgium

Personalised recommendations