Materials and Structures

, Volume 43, Issue 4, pp 463–474 | Cite as

Reduction of perpendicular-to-grain stresses in the apex zone of curved beams using glued-in rods

  • J. G. Fueyo
  • J. A. Cabezas
  • M. P. Rubio
  • M. Domínguez
Original Article


This paper reports a finite-element-based study of the reduction, using glued-in rods, of the perpendicular-to-grain stresses in the apex zone of curved beams in glulam structural timber members. Currently, the design of this type of elements is conducted using simplifying assumptions about the perpendicular-to-grain stress distribution in the apex zone, which start out from the calculation of the parallel-to-grain stress distribution and apply some corrector coefficients to it, confirmed by years of experience and studies. This work presents a practical approach, by conducting a numerical simulation of the behavior of these stresses in the apex zone with the presence of glued-in rods, which enables optimization in the design of this type of assembly. The finite element results demonstrate the importance of the features, number and positions of the glued-in rods.


Glued-in rods FEM Timber structures 



This work was funded by the Spanish government, Plan Nacional del Ministerio de Ciencia y Tecnología, within the framework of research project BIA2005-07124.


  1. 1.
    ABAQUS (2006) User’s manual, version 6.6 Documentation. Hibbitt. Karlsson & Sorensen, Inc., Pawtucket, USAGoogle Scholar
  2. 2.
    Alam P, Ansell MP, Smedley D (2009) Mechanical repair of timber beams fractured in flexure using bonded-in reinforcements. Compos Part B 40:95–106. doi: 10.1016/j.compositesb.2008.11.010 CrossRefGoogle Scholar
  3. 3.
    Argüelles R, Arriaga F, Martınez JJ (2003) Estructuras de Madera. Diseño y Cálculo [Timber structures. Design and Calculus]. AITIM, Madrid, SpainGoogle Scholar
  4. 4.
    Bainbridge R, Mettem C, Harvey K, Ansell M (2002) Bonded-in rod connections for timber structures-development of design methods and test observations. Int J Adhes Adhes 22:47–59. doi: 10.1016/S0143-7496(01)00036-7 CrossRefGoogle Scholar
  5. 5.
    Blaß HJ, Steck G (1999) Perpendicular to the grain reinforcements of timber. In: Proceedings, Pacific timber engineering conference, Rotorua, New Zealand, ISSN 1174-5096, pp 107–113Google Scholar
  6. 6.
    Broughton JG, Hutchinson AR (2001) Adhesive systems for structural connections in timber. Int J Adhes Adhes 21:177–186. doi: 10.1016/S0143-7496(00)00049-X CrossRefGoogle Scholar
  7. 7.
    Broughton JG, Hutchinson AR (2001) Effect of timber moisture content on bonded-in rods. Construct Build Mater 15:17–25. doi: 10.1016/S0950-0618(00)00066-0 CrossRefGoogle Scholar
  8. 8.
    CEN (2001) EN 1991. Eurocode 1. Actions on structures. European committee for standardization, Brussels, BelgiumGoogle Scholar
  9. 9.
    CEN (2003) Structural timber strength. Classes. EN 338. European committee for standardization, Brussels, BelgiumGoogle Scholar
  10. 10.
    CEN (2004) EN 1995-1-1. Eurocode 5. Design of timber structures. Part 1-1. European committee for standardization, Brussels, BelgiumGoogle Scholar
  11. 11.
    CEN (2004) Structural timber. Strength classes. Assignment of visual grades and species. EN 1912. European committee for standardization, Brussels, BelgiumGoogle Scholar
  12. 12.
    Gómez SM, Svecova D (2006) The use of glass fibre-reinforced polymer for retrofitting split timber stringers. In: Proceedings of the seventh international conference on short & medium span bridges, Montreal, Canada RR-012Google Scholar
  13. 13.
    Harvey K, Ansell MP (2000). Improved timber connections using bonded-in GFRP rods. In: Proceedings of the international timber engineering conference, CanadaGoogle Scholar
  14. 14.
    Herzog T, Natterer J, Schweitzer R, Volz M, Winter W (2003) Construire en Bois. Presses Polytechniques et Universitaires Romandes, Lausanne, SwitzerlandGoogle Scholar
  15. 15.
    Johansson S (1991) Glued-in bolts. STEP 1 timber engineering. Centrum Hout, HolandGoogle Scholar
  16. 16.
    Jönsson J (2005) Load carrying capacity of curved glulam beams reinforced withself-tapping screws. Holz als Roh- und Werkstoff 63:342–346CrossRefGoogle Scholar
  17. 17.
    Kangas J (2000) Design of connections based on in V-form glued-in rods. In: Proceedings of international timber engineering conference, CanadaGoogle Scholar
  18. 18.
    Kasal B, Heiduschke A (2004) Radial reinforcement of curved glue laminated wood beams with composite materials. For Prod J 54(1):74–79Google Scholar
  19. 19.
    Koizumi A, Jensen JL, Sasaki T (2001) Structural joints with glued-in hardwood dowels. International RILEM symposium on joints in timber structures, Stuttgart, Germany, pp 403–412Google Scholar
  20. 20.
    Mackerle J (2003) Finite element analysis of fastening and joining: a bibliography (1990–2002). Int J Press Vessels Pip 80:253–271. doi: 10.1016/S0308-0161(03)00030-9 CrossRefGoogle Scholar
  21. 21.
    Madhoushi M, Ansell MP (2008) Behaviour of timber connections using glued-in GFRP rods under fatigue loading. Part II: moment-resisting connections. Compos Part B 39:249–257. doi: 10.1016/j.compositesb.2006.11.002 CrossRefGoogle Scholar
  22. 22.
    Radford DW, Van Goethem D, Gutkowski RM, Peterson ML (2002) Composites repair of timber structures. Construct Build Mater 16:417–425. doi: 10.1016/S0950-0618(02)00044-2 CrossRefGoogle Scholar
  23. 23.
    Svecova D, Eden RJ (2004) Flexural and shear strengthening of timber beams using glass fibre reinforced polymer bars: an experimental investigation. Can J Civ Eng 31:45–55. doi: 10.1139/l03-069 CrossRefGoogle Scholar
  24. 24.
    Thelandersson S, Larsen HJ (2003) Timber engineering. Wiley, New YorkGoogle Scholar
  25. 25.
    USDA (1998) Wood handbook—wood as an engineering material. USDA, forest service, forest products laboratory, Madison, WIGoogle Scholar
  26. 26.
    van Rossum G (2006) Python tutorial. Python Software Foundation.

Copyright information

© RILEM 2009

Authors and Affiliations

  • J. G. Fueyo
    • 1
  • J. A. Cabezas
    • 1
  • M. P. Rubio
    • 1
  • M. Domínguez
    • 1
  1. 1.Department of Mechanical EnginneringUniversity of SalamancaZamoraSpain

Personalised recommendations