Materials and Structures

, 43:125 | Cite as

Effect of silica fume, steel fiber and ITZ on the strength and fracture behavior of mortar

  • Xiao Hui Wang
  • Stefan Jacobsen
  • Siaw Foon Lee
  • Jian Ying He
  • Zhi Liang Zhang
Original Article


Two sets of parameters known to affect the quality and thickness of the interfacial transition zone (ITZ), i.e. water/binder ratio and content of silica fume were varied in a series of mortars without and with steel fiber. Compressive and three-point bending tests were performed and the dissipated energies were calculated. Nanoindentation characteristics of the steel fiber–matrix and fiber–matrix-aggregate interfacial zones in the steel fiber reinforced mortars were studied. Influence of water/binder ratio, steel fiber, silica fume and ITZ on the strength and toughness of the mortar was analyzed, respectively. It is found that mortar compressive strength can be increased with low volume addition of steel fiber if the air content is well controlled; the interfacial characteristic and microstructural morphology near the fiber surface play a critical role on the three-point bending strength and the toughness of the steel fiber reinforced mortar.


Steel fiber Silica fume Strength and toughness Nanoindentation Interfacial transition zone (ITZ) 


  1. 1.
    Mitsui K, Li Z, Lange DA et al (1994) Relationship between microstructure and mechanical properties of the paste-aggregate interface. ACI Mater J 91(1):30–39Google Scholar
  2. 2.
    Husem M (2003) The effects of bond strengths between lightweight and ordinary aggregate-mortar, aggregate-cement paste on the mechanical properties of concrete. Mater Sci Eng A 363(1–2):152–158. doi:10.1016/S0921-5093(03)00595-1 Google Scholar
  3. 3.
    Akçaoğlu T, Tokyay M, Çelik T (2005) Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete. Cement Concr Res 35(2):358–363. doi:10.1016/j.cemconres.2004.05.042 CrossRefGoogle Scholar
  4. 4.
    Bentur A, Alexander MG, Bentz D et al (2000) Review of the work of the RILEM TC 159-ETC: engineering of the interfacial transition zone in cementitious composites. Mater Struct 33(2):82–87. doi:10.1007/BF02484160 CrossRefGoogle Scholar
  5. 5.
    Merchant IJ, Macphee DE, Chandler HW et al (2001) Toughening cement-based materials through the control of interfacial bonding. Cement Concr Res 31(12):1873–1880. doi:10.1016/S0008-8846(01)00500-2 CrossRefGoogle Scholar
  6. 6.
    Guinea GV, El-Sayed K, Rocco CG et al (2002) The effect of the bond between the matrix and the aggregates on the cracking mechanism and fracture parameters of concrete. Cement Concr Res 32(12):1961–1970. doi:10.1016/S0008-8846(02)00902-X CrossRefGoogle Scholar
  7. 7.
    Prokopski G, Langier B (2000) Effect of water/cement ratio and silica fume addition on the fracture toughness and morphology of fractured surfaces of gravel concretes. Cement Concr Res 30(9):1427–1433. doi:10.1016/S0008-8846(00)00332-X CrossRefGoogle Scholar
  8. 8.
    Mouret M, Bascoul A, Escadeillas G (1999) Microstructural features of concrete in relation to initial temperature—SEM and ESEM characterization. Cement Concr Res 29(3):369–375. doi:10.1016/S0008-8846(98)00160-4 CrossRefGoogle Scholar
  9. 9.
    Gatty L, Bonnamy S, Feylessoufi A et al (2001) A transmission electron microscopy study of interfaces and matrix homogeneity in ultra-high-performance cement-based materials. J Mater Sci 36(16):4013–4026. doi:10.1023/A:1017938725748 CrossRefGoogle Scholar
  10. 10.
    Diamond S (2001) Considerations in image analysis as applied to investigations of the ITZ in concrete. Cement Concr Compos 23(2–3):171–178. doi:10.1016/S0958-9465(00)00085-8 CrossRefGoogle Scholar
  11. 11.
    Scrivener KL (2004) Backscattered electron imaging of cementitious microstructures: understanding and quantification. Cement Concr Compos 26(8):935–945. doi:10.1016/j.cemconcomp.2004.02.029 CrossRefGoogle Scholar
  12. 12.
    Sun W, Mandel JA, Said S (1986) Study of the interface strength in steel fiber-reinforced cement-based composites. J Am Concr Inst 83(4):597–605Google Scholar
  13. 13.
    Igarashi S, Bentur A, Mindess S (1996) Microhardness testing of cementitious materials. Adv Cem Based Mater 4(2):48–57Google Scholar
  14. 14.
    Cross WM, Sabnis KH, Kjerengtroen L et al (2000) Microhardness testing of fiber-reinforced cement paste. ACI Mater J 97(2):162–167Google Scholar
  15. 15.
    Velez K, Sorrentino F (2001) Characterization of cementitious materials by nanoindentation. In: Kurdowski W, Gawlicki M (eds) Kurdowski symposium—science of cement and concrete, Krakow, June 20–21, pp 67–77Google Scholar
  16. 16.
    Oliver WC, Pharr GM (1992) Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1580. doi:10.1557/JMR.1992.1564 CrossRefGoogle Scholar
  17. 17.
    Constantinides G, Ulm FJ, Van Vliet K (2003) On the use of nanoindentation for cementitious materials. Mater Struct 36(3):191–196. doi:10.1007/BF02479557 CrossRefGoogle Scholar
  18. 18.
    DeJong MJ, Ulm FJ (2007) The nanogranular behavior of C-S-H at elevated temperatures (up to 700°C). Cement Concr Res 37(1):1–12. doi:10.1016/j.cemconres.2006.09.006 CrossRefGoogle Scholar
  19. 19.
    Mondal P, Shah SP, Marks L (2007) A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials. Cement Concr Res 37(10):1440–1444. doi:10.1016/j.cemconres.2007.07.001 CrossRefGoogle Scholar
  20. 20.
    Mondal P, Shah SP, Marks LD (2008) Nanoscale characterization of cementitious materials. ACI Mater J 105(2):174–179Google Scholar
  21. 21.
    Nĕmeček J, Kabele P, Bittnar Z (2004) Nanoindentation based assessment of micromechanical properties of fiber reinforced cementitious composite. In: 6th RILEM symposium on fiber-reinforced concrete (FRC), BEFIB, Varenna, Italy, pp 401–410Google Scholar
  22. 22.
    Zhu W, Sonebi M, Bartos PJM (2004) Bond and interfacial properties of reinforcement in self-compacting concrete. Mater Struct 37(7):442–448. doi:10.1007/BF02481580 CrossRefGoogle Scholar
  23. 23.
    Banfill PFG (1994) Rheological methods for assessing the flow properties of mortar and related materials. Constr Build Mater 8(1):43–50. doi:10.1016/0950-0618(94)90007-8 CrossRefGoogle Scholar
  24. 24.
    Faroug F, Szwabowski J, Wild S (1999) Influence of superplasticizers on workability of concrete. J Mater Civ Eng 11(2):151–157. doi:10.1061/(ASCE)0899-1561(1999)11:2(151) CrossRefGoogle Scholar
  25. 25.
    Jacoben S, Arntsen B (2008) Aggregate packing and -void saturation in mortar and concrete proportioning. Mater Struct 41(4):703–716. doi:10.1617/s11527-007-9275-4 CrossRefGoogle Scholar
  26. 26.
    Kjellsen KO, Wallevik OH, Hallgren M (1999) On the compressive strength development of high-performance concrete and paste—effect of silica fume. Mater Struct 32(1):63–69. doi:10.1007/BF02480414 CrossRefGoogle Scholar
  27. 27.
    Bentur A (2000) Role of interfaces in controlling durability of fiber-reinforced cements. J Mater Civ Eng 12(1):2–7. doi:10.1061/(ASCE)0899-1561(2000)12:1(2) CrossRefGoogle Scholar
  28. 28.
    Balendran RV, Zhou FP, Nadeem A et al (2002) Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Build Environ 37(12):1361–1367. doi:10.1016/S0360-1323(01)00109-3 CrossRefGoogle Scholar
  29. 29.
    Feldman RF, Huang C (1985) Properties of Portland cement-silicate fume pastes-I porosity and surface properties. Cement Concr Res 15(5):765–774. doi:10.1016/0008-8846(85)90141-3 CrossRefGoogle Scholar

Copyright information

© RILEM 2009

Authors and Affiliations

  • Xiao Hui Wang
    • 1
    • 2
  • Stefan Jacobsen
    • 2
  • Siaw Foon Lee
    • 2
  • Jian Ying He
    • 2
  • Zhi Liang Zhang
    • 2
  1. 1.Department of Civil EngineeringShanghai Jiaotong UniversityShanghaiChina
  2. 2.Department of Structural Engineering, Faculty of Engineering Science and TechnologyNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations