NeuroRX

, Volume 2, Issue 3, pp 495–503 | Cite as

Genetic mouse models of parkinsonism: Strengths and limitations

  • Sheila M. Fleming
  • Pierre-Olivier Fernagut
  • Marie-Françoise Chesselet
Article

Summary

Parkinson’s disease (PD) is a progressive neurodegenerative disorder. Patients with PD display a combination of motor symptoms including resting tremor, rigidity, bradykinesia, and postural instability that worsen over time. These motor symptoms are related to the progressive loss of dopamine neurons in the substantia nigra pars compacta. PD patients also suffer from nonmotor symptoms that may precede the cardinal motor symptoms and that are likely related to pathology in other brain regions. Traditional toxin models of PD have focused on the nigrostriatal pathway and the loss of dopamine neurons in this region, and these models have been important in our understanding of PD and in the development of symptomatic treatments for the disease. However, they are limited in that they do not reproduce the full pathology and progression seen in PD, thus creating a need for better models. The recent discovery of specific genes causing familial forms of PD has contributed to the development of novel genetic mouse models of PD. This review discusses the validity, benefits, and limitations of these new models.

Key Words

α-Synuclein parkin DJ-1 Nurrl Pitx3 mice 

References

  1. 1.
    Stiasny-Kolster K, Doerr Y, Moller JC, Hoffken H, Behr TM, Oertel WH, Mayer G. Combination of “idiopathic” REM sleep behaviour disorder and olfactory dysfunction as possible indicator for α-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain 128: 126–137, 2005.PubMedCrossRefGoogle Scholar
  2. 2.
    Ponsen MM, Stoffers D, Booij J, van Eck-Smit BL, Wolters E, Berendse HW. Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol 56: 173–181, 2004.PubMedCrossRefGoogle Scholar
  3. 3.
    Becker G, Muller A, Braune S, Buttner T, Benecke R, Greulich W, Klein W, Mark G, Rieke J, Thumler R. Early diagnosis of Parkinson’s disease. J Neurol 249 [Suppl 3]: III40-III48, 2002.Google Scholar
  4. 4.
    Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299: 256–259, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608, 1998.PubMedCrossRefGoogle Scholar
  6. 6.
    Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 18: 106–108, 1998.PubMedCrossRefGoogle Scholar
  7. 7.
    Leroy E, Anastasopoulos D, Konitsiotis S, Lavedan C, Polymeropoulos MH. Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson’s disease. Hum Genet 103: 424–427, 1998.PubMedCrossRefGoogle Scholar
  8. 8.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047, 1997.PubMedCrossRefGoogle Scholar
  9. 9.
    Singleton AB, Faner M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K. α-synuclein locus triplication causes Parkinson’s disease. Science 302: 841, 2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Wintermeyer P, Kruger R, Kuhn W, Muller T, Woitalla D, Berg D, Becker G, Leroy E, Polymeropoulos M, Berger K, Przuntek H, Schols L, Epplen JT, Riess O. Mutation analysis and association studies of the UCHL1 gene in German Parkinson’s disease patients. Neuroreport 11: 2079–2082, 2000.PubMedCrossRefGoogle Scholar
  11. 11.
    Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Al-banese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304: 1158–1160, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, de Munain AL, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Marti-Masso JF, Perez-Tur J, Wood NW, Singleton AB. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44: 595–600, 2004.PubMedCrossRefGoogle Scholar
  13. 13.
    Zimprich A, Muller-Myhsok B, Farrer M, Leitner P, Sharma M, Hulihan M, Lockhart P, Strongosky A, Kachergus J, Calne DB, Stoessl J, Uitti RJ, Pfeiffer RF, Trenkwalder C, Homann N, Ott E, Wenzel K, Asmus F, Hardy J, Wszolek Z, Gasser T. The PARK8 locus in autosomal dominant parkinsonism: confirmation of linkage and further delineation of the disease-containing interval. Am J Hum Genet 74: 11–19, 2004.PubMedCrossRefGoogle Scholar
  14. 14.
    Spillantini MG, Goedert M. The α-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Ann NY Acad Sci 920: 16–27, 2000.PubMedCrossRefGoogle Scholar
  15. 15.
    Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, Orrison B, Chen A, Ellis CE, Paylor R, Lu B, Nussbaum RL. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. J Neurosci 22: 8797–8807, 2002.PubMedGoogle Scholar
  16. 16.
    Yavich L, Tanila H, Vepsalainen S, Jakala P. Role of α-synuclein in presynaptic dopamine recruitment. J Neurosci 24: 11165–11170, 2004.PubMedCrossRefGoogle Scholar
  17. 17.
    Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55: 164–173, 2004.PubMedCrossRefGoogle Scholar
  18. 18.
    Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F, Pollak P, Agid Y, Durr A, Brice A. Causal relation between α-synuclein gene duplication and familial Parkinson’s disease. Lancet 364: 1169–1171, 2004.PubMedCrossRefGoogle Scholar
  19. 19.
    Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A. α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364: 1167–1169, 2004.PubMedCrossRefGoogle Scholar
  20. 20.
    Farrer M, Maraganore DM, Lockhart P, Singleton A, Lesnick TG, de Andrade M, West A, de Silva R, Hardy J, Hernandez D. α-synuclein gene haplotypes are associated with Parkinson’s disease. Hum Mol Genet 10: 1847–1851, 2001.PubMedCrossRefGoogle Scholar
  21. 21.
    Holzmann C, Kruger R, Saecker AM, Schmitt I, Schols L, Berger K, Riess O. Polymorphisms of the α-synuclein promoter: expression analyses and association studies in Parkinson’s disease. J Neural Transm 110: 67–76, 2003.PubMedGoogle Scholar
  22. 22.
    Pals P, Lincoln S, Manning J, Heckman M, Skipper L, Hulihan M, Van den Broeck M, De Pooter T, Cras P, Crook J, Van Broeckhoven C, Faner MJ. α-synuclein promoter confers susceptibility to Parkinson’s disease. Ann Neurol 56: 591–595, 2004.PubMedCrossRefGoogle Scholar
  23. 23.
    Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25: 239–252, 2000.PubMedCrossRefGoogle Scholar
  24. 24.
    Chandra S, Fomai F, Kwon HB, Yazdani U, Atasoy D, Liu X, Hammer RE, Battaglia G, German DC, Castillo PE, Sudhof TC. Double-knockout mice for α- and β-synucleins: effect on synaptic functions. Proc Natl Acad Sci USA 101: 14966–14971, 2004.PubMedCrossRefGoogle Scholar
  25. 25.
    Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, Staal R, Tieu K, Schmitz Y, Yuan CA, Rocha M, Jackson-Lewis V, Hersch S, Sulzer D, Przedborski S, Burke R, Hen R. Resistance of α-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99: 14524–14529, 2002.PubMedCrossRefGoogle Scholar
  26. 26.
    Schluter OM, Fornai F, Alessandri MG, Takamori S, Geppert M, Jahn R, Sudhof TC. Role of α-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuroscience 118: 985–1002, 2003.PubMedCrossRefGoogle Scholar
  27. 27.
    Drolet RE, Behrouz B, Lookingland KJ, Goudreau JL. Mice lacking α-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology 25: 761–769, 2004.PubMedCrossRefGoogle Scholar
  28. 28.
    Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Schindzielorz A, Okochi M, Leimer U, van Der Putten H, Probst A, Kremmer E, Kretzschmar HA, Haass C. Subcellular localization of wild-type and Parkinson’s disease-associated mutant α-synuclein in human and transgenic mouse brain. J Neurosci 20: 6365–6373, 2000.PubMedGoogle Scholar
  29. 29.
    van der Putten H, Wiederhold KH, Probst A, Barbieri S, Mistl C, Danner S, Kauffmann S, Hofele K, Spooren WP, Ruegg MA, Lin S, Caroni P, Sommer B, Tolnay M, Bilbe G. Neuropathology in mice expressing human α-synuclein. J Neurosci 20: 6021–6029, 2000.PubMedGoogle Scholar
  30. 30.
    Lee MK, Stilling W, Xu Y, Xu X, Qui D, Mandir AS, Dawson TM, Copeland NG, Jenkins NA, Price DL. Human α-synuclein-harboring familial Parkinson’s disease-linked Ala-53 -> Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 99: 8968–8973, 2002.PubMedCrossRefGoogle Scholar
  31. 31.
    Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34: 521–533, 2002.PubMedCrossRefGoogle Scholar
  32. 32.
    Gomez-Isla T, Irizarry MC, Mariash A, Cheung B, Soto O, Schrump S, Sondel J, Kotilinek L, Day J, Schwarzschild MA, Cha JH, Newell K, Miller DW, Ueda K, Young AB, Hyman BT, Ashe KH. Motor dysfunction and gliosis with preserved dopaminergic markers in human α-synuclein A30P transgenic mice. Neurobiol Aging 24: 245–258, 2003.PubMedCrossRefGoogle Scholar
  33. 33.
    Richfield EK, Thiruchelvam MJ, Cory-Slechta DA, Wuertzer C, Gainetdinov RR, Caron MG, Di Monte DA, Federoff HJ. Behavioral and neurochemical effects of wild-type and mutated human α-synuclein in transgenic mice. Exp Neurol 175: 35–48, 2002.PubMedCrossRefGoogle Scholar
  34. 34.
    Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E. Differential neuropathological alterations in transgenic mice expressing α-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68: 568–578, 2002.PubMedCrossRefGoogle Scholar
  35. 35.
    Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 287: 1265–1269, 2000.PubMedCrossRefGoogle Scholar
  36. 36.
    Gispert S, Del Turco D, Garrett L, Chen A, Bernard DJ, Hamm-Clement J, Korf HW, Deller T, Braak H, Auburger G, Nussbaum RL. Transgenic mice expressing mutant A53T human α-synuclein show neuronal dysfunction in the absence of aggregate formation. Mol Cell Neurosci 24: 419–429, 2003.PubMedCrossRefGoogle Scholar
  37. 37.
    Thiruchelvam MJ, Powers JM, Cory-Slechta DA, Richfield EK. Risk factors for dopaminergic neuron loss in human α-synuclein transgenic mice. Eur J Neurosci 19: 845–854, 2004.PubMedCrossRefGoogle Scholar
  38. 38.
    Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E. Enhanced substantia nigra mitochondrial pathology in human α-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186: 158–172, 2004.PubMedCrossRefGoogle Scholar
  39. 39.
    Fleming SM, Salcedo J, Femagut PO, Rockenstein E, Masliah E, Levine MS, Chesselet MF. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human α-synuclein. J Neurosci 24: 9434–9440, 2004.PubMedCrossRefGoogle Scholar
  40. 40.
    Frey KA, Koeppe RA, Kilbourn MR, Vander Borght TM, Albin RL, Gilman S, Kuhl DE. Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40: 873–884, 1996.PubMedCrossRefGoogle Scholar
  41. 41.
    Rinne JO, Ruottinen H, Bergman J, Haaparanta M, Sonninen P, Solin O. Usefulness of a dopamine transporter PET ligand [(18)F]β-CFT in assessing disability in Parkinson’s disease. J Neurol Neurosurg Psychiatry 67: 737–741, 1999.PubMedCrossRefGoogle Scholar
  42. 42.
    Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denefle P, Wood NW, Agid Y, Brice A. Association between early-onset Parkinson’s disease and mutations in the parkin gene. French Parkinson’s Disease Genetics Study Group. N Engl J Med 342: 1560–1567, 2000.PubMedCrossRefGoogle Scholar
  43. 43.
    Hayashi S, Wakabayashi K, Ishikawa A, Nagai H, Saito M, Maruyama M, Takahashi T, Ozawa T, Tsuji S, Takahashi H. An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov Disord 15: 884–888, 2000.PubMedCrossRefGoogle Scholar
  44. 44.
    Mori H, Kondo T, Yokochi M, Matsumine H, Nakagawa-Hattori Y, Miyake T, Suda K, Mizuno Y. Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q. Neurology 51: 890–892, 1998.PubMedGoogle Scholar
  45. 45.
    Takahashi H, Ohama E, Suzuki S, Horikawa Y, Ishikawa A, Morita T, Tsuji S, Ikuta F. Familial juvenile parkinsonism: clinical and pathologic study in a family. Neurology 44: 437–441, 1994.PubMedGoogle Scholar
  46. 46.
    Faner M, Chan P, Chen R, Tan L, Lincoln S, Hernandez D, Fomo L, Gwinn-Hardy K, Petrucelli L, Hussey J, Singleton A, Tanner C, Hardy J, Langsten JW. Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 50: 293–300, 2001.CrossRefGoogle Scholar
  47. 47.
    Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105: 891–902, 2001.PubMedCrossRefGoogle Scholar
  48. 48.
    Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293: 263–269, 2001.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 97: 13354–13359, 2000.PubMedCrossRefGoogle Scholar
  50. 50.
    Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM. Parkin ubiquitinates the α-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7: 1144–1150, 2001.PubMedCrossRefGoogle Scholar
  51. 51.
    Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Böhme GA, Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M, Araujo F, Negroni J, Casarejos MJ, Canals S, Solano R, Serrano A, Gallego E, Sanchez M, Denefle P, Benavides J, Tremp G, Rooney TA, Brice A, Garcia de Yebenes J. Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12: 2277–2291, 2003.PubMedCrossRefGoogle Scholar
  52. 52.
    Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, Gajendiran M, Roth BL, Chesselet MF, Maidment NT, Levine MS, Shen J. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278: 43628–43635, 2003.PubMedCrossRefGoogle Scholar
  53. 53.
    Von Coelln R, Thomas B, Savitt JM, Lim KL, Sasaki M, Hess EJ, Dawson VL, Dawson TM. Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci USA 101: 10744–10749, 2004.CrossRefGoogle Scholar
  54. 54.
    Perez FA, Palmiter RD. Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci USA 102: 2174–2179, 2005.PubMedCrossRefGoogle Scholar
  55. 55.
    Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279: 18614–18622, 2004.PubMedCrossRefGoogle Scholar
  56. 56.
    German DC, Manaye KF, White CL 3rd, Woodward DJ, McIntire DD, Smith WK, Kalaria RN, Mann DM. Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32: 667–676, 1992.PubMedCrossRefGoogle Scholar
  57. 57.
    Sidman RL, Dickie MM, Appel SH. Mutant mice (Quaking and Jimpy) with deficient myelination in the central nervous system. Science 144: 309–311, 1964.PubMedCrossRefGoogle Scholar
  58. 58.
    Lorenzetti D, Antalffy B, Vogel H, Noveroske J, Armstrong D, Justice M. The neurological mutant quaking (viable) is Parkin deficient. Mamm Genome 15: 210–217, 2004.PubMedCrossRefGoogle Scholar
  59. 59.
    Lockhart PJ, O’Farrell CA, Faner MJ. It’s a double knock-out! The quaking mouse is a spontaneous deletion of parkin and parkin co-regulated gene (PACRG). Mov Disord 19: 101–104, 2004.PubMedCrossRefGoogle Scholar
  60. 60.
    Nikulina EM, Skrinskaya JA, Avgustinovich DF, Popova NK. Dopaminergic brain system in the quaking mutant mouse. Pharmacol Biochem Behav 50: 333–337, 1995.PubMedCrossRefGoogle Scholar
  61. 61.
    Hwang DY, Fleming SM, Ardayfio P, Moran-Gates T, Kim H, Tarazi FI, Chesselet MF, Kim KS. 3,4-Dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson’s disease. J Neurosci 25: 2132–2137, 2005.PubMedCrossRefGoogle Scholar
  62. 62.
    Abou-Sleiman PM, Healy DG, Quinn N, Lees AJ, Wood NW. The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann Neurol 54: 283–286, 2003.PubMedCrossRefGoogle Scholar
  63. 63.
    Hague S, Rogaeva E, Hernandez D, Gulick C, Singleton A, Hanson M, Johnson J, Weiser R, Gallardo M, Ravina B, Gwinn-Hardy K, Crawley A, St George-Hyslop PH, Lang AE, Heutink P, Bonifati V, Hardy J. Early-onset Parkinson’s disease caused by a compound heterozygous DJ-1 mutation. Ann Neurol 54: 271–274, 2003PubMedCrossRefGoogle Scholar
  64. 64.
    Hedrich K, Djarmati A, Schafer N, Hering R, Wellenbrock C, Weiss PH, Hilker R, Vieregge P, Ozelius LJ, Heutink P, Bonifati V, Schwinger E, Lang AE, Noth J, Bressman SB, Pramstaller PP, Riess O, Klein C. DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 62: 389–394, 2004.PubMedGoogle Scholar
  65. 65.
    Bandopadhyay R, Kingsbury AE, Cookson MR, Reid AR, Evans IM, Hope AD, Pittman AM, Lashley T, Canet-Aviles R, Miller DW, McLendon C, Strand C, Leonard AJ, Abou-Sleiman PM, Healy DG, Ariga H, Wood NW, de Silva R, Revesz T, Hardy JA, Lees AJ. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain 127: 420–430, 2004.PubMedCrossRefGoogle Scholar
  66. 66.
    Nagakubo D, Taira T, Kitaura H, Ikeda M, Tamai K, Iguchi-Ariga SM, Ariga H. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem Biophys Res Commun 231: 509–513, 1997.PubMedCrossRefGoogle Scholar
  67. 67.
    Hod Y, Pentyala SN, Whyard TC, El-Maghrabi MR. Identification and characterization of a novel protein that regulates RNA-protein interaction. J Cell Biochem 72: 435–444, 1999.PubMedCrossRefGoogle Scholar
  68. 68.
    Mitsumoto A, Nakagawa Y. DJ-1 is an indicator for endogenous reactive oxygen species elicited by endotoxin. Free Radic Res 35: 885–893, 2001.PubMedCrossRefGoogle Scholar
  69. 69.
    Mitsumoto A, Nakagawa Y, Takeuchi A, Okawa K, Iwamatsu A, Takanezawa Y. Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic Res 35: 301–310, 2001.PubMedCrossRefGoogle Scholar
  70. 70.
    Greenamyre JT, Hastings TG. Biomedicine. Parkinson’s—divergent causes, convergent mechanisms. Science 304: 1120–1122, 2004.PubMedCrossRefGoogle Scholar
  71. 71.
    Yokota T, Sugawara K, Ito K, Takahashi R, Ariga H, Mizusawa H. Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun 312: 1342–1348, 2003.PubMedCrossRefGoogle Scholar
  72. 72.
    Martinat C, Shendelman S, Jonason A, Leete T, Beal MF, Yang L, Floss T, Abeliovich A. Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES-derived cell model of primary parkinsonism. PLoS Biol 2: e327, 2004.PubMedCrossRefGoogle Scholar
  73. 73.
    Shendelman S, Jonason A, Martinat C, Leete T, Abeliovich A. DJ-1 is a redox-dependent molecular chaperone that inhibits α-synuclein aggregate formation. PLoS Biol 2: e362, 2004.PubMedCrossRefGoogle Scholar
  74. 74.
    Goldberg MS, Pisani A, Haburcak M, Vortherms TA, Kitada T, Costa C, Tong Y, Martella G, Tscherter A, Martins A, Bemardi G, Roth BL, Pothos EN, Calabresi P, Shen J. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 45: 489–496, 2005.PubMedCrossRefGoogle Scholar
  75. 75.
    Kim RH, Smith PD, Aleyasin H, Hayley S, Mount MP, Pownall S, Wakeham A, You-Ten AJ, Kalia SK, Home P, Westaway D, Lozano AM, Anisman H, Park DS, Mak TW. Hypersensitivity of DJ-1-deficient mice to l-methyl-4-phenyl-l,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci USA 2005.Google Scholar
  76. 76.
    Law SW, Conneely OM, DeMayo FJ, O’Malley BW. Identification of a new brain-specific transcription factor, NURR1. Mol Endocrinol 6: 2129–2135, 1992.PubMedCrossRefGoogle Scholar
  77. 77.
    Iwawaki T, Kohno K, Kobayashi K. Identification of a potential nurrl response element that activates the tyrosine hydroxylase gene promoter in cultured cells. Biochem Biophys Res Commun 274: 590–595, 2000.PubMedCrossRefGoogle Scholar
  78. 78.
    Sacchetti P, Mitchell TR, Granneman JG, Bannon MJ. Nurrl enhances transcription of the human dopamine transporter gene through a novel mechanism. J Neurochem 76: 1565–1572, 2001.PubMedCrossRefGoogle Scholar
  79. 79.
    Le WD, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, Vassilatis DK. Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 33: 85–89, 2003.PubMedCrossRefGoogle Scholar
  80. 80.
    Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T. Dopamine neuron agenesis in Nurr1-deficient mice. Science 276: 248–250, 1997.PubMedCrossRefGoogle Scholar
  81. 81.
    Le W, Conneely OM, He Y, Jankovic J, Appel SH. Reduced Nurr1 expression increases the vulnerability of mesencephalic dopamine neurons to MPTP-induced injury. J Neurochem 73: 2218–2221, 1999.PubMedGoogle Scholar
  82. 82.
    Jiang C, Wan X, He Y, Pan T, Jankovic J, Le W. Age-dependent dopaminergic dysfunction in Nurr1 knockout mice. Exp Neurol 191: 154–162, 2005.PubMedCrossRefGoogle Scholar
  83. 83.
    Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 100: 4245–4250, 2003.PubMedCrossRefGoogle Scholar
  84. 84.
    Hwang DY, Ardayfio P, Kang UJ, Semina EV, Kim KS. Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res 114: 123–131, 2003.PubMedCrossRefGoogle Scholar
  85. 85.
    Semina EV, Murray JC, Reiter R, Hrstka RF, Graw J. Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum Mol Genet 9: 1575–1585, 2000.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2005

Authors and Affiliations

  • Sheila M. Fleming
    • 1
  • Pierre-Olivier Fernagut
    • 1
  • Marie-Françoise Chesselet
    • 1
  1. 1.Departments of Neurology and NeurobiologyThe David Geffen School of Medicine at UCLALos Angeles

Personalised recommendations