, Volume 1, Issue 1, pp 139–154

Neurodegeneration and neuroprotection in Parkinson disease



Many of the motoric features that define Parkinson disease (PD) result primarily from the loss of the neuromelanin (NM)-containing dopamine (DA) neurons of the substantia nigra (SN), and to a lesser extent, other mostly catecholaminergic neurons, and are associated with cytoplasmic “Lewy body” inclusions in some of the surviving neurons. While there are uncommon instances of familial PD, and rare instances of known genetic causes, the etiology of the vast majority of PD cases remains unknown (i.e., idiopathic). Here we outline genetic and environmental findings related to PD epidemiology, suggestions that aberrant protein degradation may play a role in disease pathogenesis, and pathogenetic mechanisms including oxidative stress due to DA oxidation that could underlie the selectivity of neurodegeneration. We then outline potential approaches to neuroprotection for PD that are derived from current notions on disease pathogenesis.

Key Words

PARK genes alpha-synuclein Parkin gene ubiquitin pathway 


  1. 1.
    Fahn S, Przedborski S. Parkinsonism. In: Merritt’s neurology (Rowland LP, ed), pp 679–693. Philadelphia: Lippincott Williams & Wilkins, 2000.Google Scholar
  2. 2.
    Fahn S. Description of Parkinson’s disease as a clinical syndrome.Ann NY Acad Sci 991: 1–14, 2003.PubMedGoogle Scholar
  3. 3.
    Seibyl JP, Marek KL, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y et al. Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease.Ann Neurol 38: 589–598, 1995.PubMedGoogle Scholar
  4. 4.
    Eidelberg D, Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Chaly T et al. Assessment of disease severity in parkinsonism with fluorine-18-fluorodeoxyglucose and PET.J Nucl Med 36: 378–383, 1995.PubMedGoogle Scholar
  5. 5.
    Snow BJ, Lee CS, Schulzer M, Mak E, Calne DB. Longitudinal fluorodopa positron emission tomographic studies of the evolution of idiopathic Parkinsonism.Ann Neurol 36: 759–764, 1994.PubMedGoogle Scholar
  6. 6.
    Morrish PK, Sawle GV, Brooks DJ. An [F-18]dopa-PET and clinical study of the rate of progression in Parkinson’s disease.Brain 119: 585–591, 1996.PubMedGoogle Scholar
  7. 7.
    Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake.Mov Disord 15: 692–698, 2000.PubMedGoogle Scholar
  8. 8.
    Mayeux R, Marder K, Cote LJ, Denaro J, Hemenegildo N, Mejia H et al. The frequency of idiopathic Parkinson’s disease by age, ethnic group, and sex in northern Manhattan, 1988–1993.Am J Epidemiol 142: 820–827, 1995.PubMedGoogle Scholar
  9. 9.
    de Rijk MC, Tzourio C, Breteler MM, Dartigues JF, Amaducci L, Lopez-Pousa S et al. Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson’s disease.J Neurol Neurosurg Psychiatry 62: 10–15, 1997.PubMedGoogle Scholar
  10. 10.
    Bower JH, Maraganore DM, McDonnell SK, Rocca WA. Influence of strict, intermediate, and broad diagnostic criteria on the age- and sex-specific incidence of Parkinson’s disease.Mov Disord 15: 819–825, 2000.PubMedGoogle Scholar
  11. 11.
    Twelves D, Perkins KS, Counsell C. Systematic review of incidence studies of Parkinson’s disease.Mov Disord 18: 19–31, 2003.PubMedGoogle Scholar
  12. 12.
    Baldereschi M, Di Carlo A, Rocca WA, Vanni P, Maggi S, Perissinotto E et al. Parkinson’s disease and parkinsonism in a longitudinal study: two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging.Neurology 55: 1358–1363, 2000.PubMedGoogle Scholar
  13. 13.
    Diederich NJ, Moore CG, Leurgans SE, Chmura TA, Goetz CG. Parkinson disease with old-age onset: a comparative study with subjects with middle-age onset.Arch Neurol 60: 529–533, 2003.PubMedGoogle Scholar
  14. 14.
    Kish SJ, Shannak K, Rajput A, Deck JH, Hornykiewicz O. Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson’s disease.J Neurochem 58: 642–648, 1992.PubMedGoogle Scholar
  15. 15.
    Scherman D, Desnos C, Darchen F, Pollak P, Javoy-Agid F, Agid Y. Striatal dopamine deficiency in Parkinson’s disease: role of aging.Ann Neurol 26: 551–557, 1989.PubMedGoogle Scholar
  16. 16.
    Booij J, Bergmans P, Winogrodzka A, Speelman JD, Wolters EC. Imaging of dopamine transporters with [123I]FP-CIT SPECT does not suggest a significant effect of age on the symptomatic threshold of disease in Parkinson’s disease.Synapse 39: 101–108, 2001.PubMedGoogle Scholar
  17. 17.
    Kubis N, Faucheux BA, Ransmayr G, Damier P, Duyckaerts C, Henin D et al. Preservation of midbrain catecholaminergic neurons in very old human subjects.Brain 123: 366–373, 2000.PubMedGoogle Scholar
  18. 18.
    Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity.Brain 114: 2283–2301, 1991.PubMedGoogle Scholar
  19. 19.
    Zeiring A, Berger L, Heineman S, Lee J. Piperidine derivatives. Part III. 4-arylpiperidines.J Org Chem 12: 894–903, 1947.Google Scholar
  20. 20.
    Schmidle CJ, Mansfield RC. The aminomethylation of olefins. IV. The formation of 1-alkyl-4-aryl- J Chem 78: 425–428, 1955.Google Scholar
  21. 21.
    Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM et al. Chronic Parkinsonism secondary to intravenous injection of meperidine analogues.Psychiatry Res 1: 249–254, 1979.PubMedGoogle Scholar
  22. 22.
    Wright JM, Wall RA, Perry TL, Paty DW. Chronic parkinsonism secondary to intranasal administration of a product of meperidine-analogue synthesis.N Engl J Med 310: 325, 1984.PubMedGoogle Scholar
  23. 23.
    Langston JW, Ballard PA. Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine.N Engl J Med 309: 310, 1983.PubMedGoogle Scholar
  24. 24.
    Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.Science 219: 979–980, 1983.PubMedGoogle Scholar
  25. 25.
    Langston JW, Palfreman J. The case of the frozen addicts. New York: Pantheon Books, 1995.Google Scholar
  26. 26.
    Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methl-4-phenyl-1,2,36-tetrahydropyridine.Proc Natl Acad Sci USA, 80: 4546–4550, 1983.PubMedGoogle Scholar
  27. 27.
    Widner H, Tetrud J, Rehncrona S, Snow B, Brundin P, Gustavii B et al. Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).N Engl J Med 327: 1556–1563, 1992.PubMedGoogle Scholar
  28. 28.
    Mena I, Court J, Fuenzalida S, Papavasiliou PS, Cotzias GC. Modification of chronic manganese poisoning. Treatment with L-dopa or 5-OH tryptophane.N Engl J Med 282: 5–10, 1970.PubMedGoogle Scholar
  29. 29.
    Cook DG, Fahn S, Brait KA. Chronic manganese intoxication.Arch Neurol 30: 59–64, 1974.PubMedGoogle Scholar
  30. 30.
    Huang CC, Chu NS, Lu CS, Wang JD, Tsai JL, Tzeng JL et al. Chronic manganese intoxication.Arch Neurol 46: 1104–1106, 1989.PubMedGoogle Scholar
  31. 31.
    Tanner CM. Epidemiology of Parkinson’s disease.Neurol Clin 10: 317–329, 1992.PubMedGoogle Scholar
  32. 32.
    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease.Nat Neurosci 3: 1301–1306, 2000.PubMedGoogle Scholar
  33. 33.
    Hernan MA, Takkouche B, Caamano-Isorna F, Gestal-Otero JJ. A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease.Ann Neurol 52: 276–284, 2002.PubMedGoogle Scholar
  34. 34.
    Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R et al. Parkinson disease in twins: an etiologic study.JAMA 281: 341–366, 1999.PubMedGoogle Scholar
  35. 35.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease.Science 276: 2045–2047, 1997.PubMedGoogle Scholar
  36. 36.
    Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease.Nat Genet 18: 106–108, 1998.PubMedGoogle Scholar
  37. 37.
    Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies.Nature 388: 839–840, 1997.PubMedGoogle Scholar
  38. 38.
    Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease.Proc Natl Acad Sci USA 90: 11282–11286, 1993.PubMedGoogle Scholar
  39. 39.
    Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK, Kleiderlein JJ et al. Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions.Nat Genet 22: 110–114, 1999.PubMedGoogle Scholar
  40. 40.
    Uversky VN, Li J, Bower K, Fink AL. Synergistic effects of pesticides and metals on the fibrillation of alpha-synuclein: implications for Parkinson’s disease.Neurotoxicology 23: 527–536, 2002.PubMedGoogle Scholar
  41. 41.
    Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct.Science 294: 1346–1349, 2001.PubMedGoogle Scholar
  42. 42.
    Yamin G, Glaser CB, Uversky VN, Fink AL. Certain metals trigger fibrillation of methionine-oxidized alpha-synuclein.J Biol Chem 16: 16, 2003.Google Scholar
  43. 43.
    Paxinou E, Chen Q, Weisse M, Giasson BI, Norris EH, Rueter SM et al. Induction of alpha-synuclein aggregation by intracellular nitrative insult.J Neurosci 21: 8053–8061, 2001.PubMedGoogle Scholar
  44. 44.
    Cole NB, Murphy DD. The cell biology of alpha-synuclein: a sticky problem?Neuromolecular Med 1: 95–109, 2002.PubMedGoogle Scholar
  45. 45.
    Clayton DF, George JM. The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease.Trends Neurosci 21: 249–254, 1998.PubMedGoogle Scholar
  46. 46.
    Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal.J Neurosci 8: 2804–2815, 1988.PubMedGoogle Scholar
  47. 47.
    Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Verdugo JMG et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system.Neuron 25: 239–252, 2000.PubMedGoogle Scholar
  48. 48.
    Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein.J Neurosci 22: 8797–8807, 2002.PubMedGoogle Scholar
  49. 49.
    Murphy DD, Rueter SM, Trojanowski JQ, Lee VM. Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons.J Neurosci 20: 3214–3220, 2000.PubMedGoogle Scholar
  50. 50.
    Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ. A role for alpha-synuclein in the regulation of dopamine biosynthesis.J Neurosci 22: 3090–3099, 2002.PubMedGoogle Scholar
  51. 51.
    Lee FJ, Liu F, Pristupa ZB, Niznik HB. Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis.FASEB J, 15: 916–926, 2001.PubMedGoogle Scholar
  52. 52.
    Singleton A, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M et al. Alpha-synuclein locus triplication in PD.Science 302: 841, 2003.PubMedGoogle Scholar
  53. 53.
    Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE et al. Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP.Proc Natl Acad Sci USA 99: 14524–14529, 2002.PubMedGoogle Scholar
  54. 54.
    Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P. Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line.J Biol Chem 277: 38884–38894, 2002.PubMedGoogle Scholar
  55. 55.
    Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R et al. Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease.Science 293: 263–269, 2001.PubMedGoogle Scholar
  56. 56.
    Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-synuclein is degraded by both autophagy and the proteasome.J Biol Chem 28: 25009–25013, 2003.Google Scholar
  57. 57.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S et al. Mutations in theparkin gene cause autosomal recessive juvenile parkinsonism.Nature 392: 605–608, 1998.PubMedGoogle Scholar
  58. 58.
    Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene.N Engl J Med 342: 1560–1567, 2000.PubMedGoogle Scholar
  59. 59.
    Farrer M, Chan P, Chen R, Tan L, Lincoln S, Hernandez D et al. Lewy bodies and parkinsonism in families with parkin mutations.Ann Neurol 50: 293–300, 2001.PubMedGoogle Scholar
  60. 60.
    Foroud T, Uniacke SK, Liu L, Pankratz N, Rudolph A, Halter C et al. Heterozygosity for a mutation in the parkin gene leads to later onset Parkinson disease.Neurology 60: 796–801, 2003.PubMedGoogle Scholar
  61. 61.
    Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1.Proc Natl Acad Sci USA 97: 13354–13359, 2000.PubMedGoogle Scholar
  62. 62.
    Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, Abeliovich A. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity.Neuron 37: 735–749, 2003.PubMedGoogle Scholar
  63. 63.
    Petrucelli L, O’Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L et al. Parkin protects against the toxicity associated with mutant alpha-synuclein.Neuron 36: 1007–1019, 2002.PubMedGoogle Scholar
  64. 64.
    Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E et al. The ubiquitin pathway in Parkinson’s disease.Nature 395: 451–452, 1998.PubMedGoogle Scholar
  65. 65.
    Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism.Science 299: 256–259, 2003.PubMedGoogle Scholar
  66. 66.
    Su HL, Li SS. Molecular features of human ubiquitin-like SUMO genes and their encoded proteins.Gene 296: 65–73, 2002.PubMedGoogle Scholar
  67. 67.
    Takahashi K, Taira T, Niki T, Seino C, Iguchi-Ariga SM, Ariga H. DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor.J Biol Chem 276: 37556–37563, 2001.PubMedGoogle Scholar
  68. 68.
    Mitsumoto A, Nakagawa Y, Takeuchi A, Okawa K, Iwamatsu A, Takanezawa Y. Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat.Free Radic Res 35: 301–310, 2001.PubMedGoogle Scholar
  69. 69.
    Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response to misfolded proteins.J Cell Biol 143: 1883–1898, 1998.PubMedGoogle Scholar
  70. 70.
    Lee HJ, Lee SJ. Characterization of cytoplasmic alpha-synuclein aggregates. Fibril formation is tightly linked to the inclusion-forming process in cells.J Biol Chem 277: 48976–48983, 2002.PubMedGoogle Scholar
  71. 71.
    Junn E, Lee SS, Suhr UT, Mouradian MM. Parkin accumulation in aggresomes due to proteasome impairment.J Biol Chem 277: 47870–47877, 2002.PubMedGoogle Scholar
  72. 72.
    Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC et al. Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease.Biochemistry 40: 7812–7819, 2001.PubMedGoogle Scholar
  73. 73.
    Javitch JA, Snyder SH. Uptake of MPP(+) by dopamine neurons explains selectivity of parkinsonism-inducing neurotoxin, MPTP.Eur J Pharmacol 106: 455–456, 1984.PubMedGoogle Scholar
  74. 74.
    Gainetdinov RR, Fumagalli F, Caron MG. Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter.J Neurochem 69: 1322–1325, 1997.PubMedGoogle Scholar
  75. 75.
    Fumagalli F, Gainetdinov RR, Valenzano KJ, Caron MG. Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter.J Neurosci 18: 4861–4869, 1998.PubMedGoogle Scholar
  76. 76.
    Ramsay RR, Salach JI, Singer TP. Uptake of the neurotoxin 1-methyl-4-phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD+-linked substrates by MPP+.Biochem Biophys Res Commun 134: 743–748, 1986.PubMedGoogle Scholar
  77. 77.
    Nicklas WJ, Youngster SK, Kindt MV, Heikkila RE. MPTP, MPP+ and mitochondrial function.Life Sci 40: 721–729, 1987.PubMedGoogle Scholar
  78. 78.
    Seutin V, Shen KZ, North RA, Johnson SW. Sulfonylurea-sensitive potassium current evoked by sodium-loading in rat mid-brain dopamine neurons.Neuroscience 71: 709–719, 1996.PubMedGoogle Scholar
  79. 79.
    Pothos EN, Mosharov E, Liu KP, Setlik W, Baldini G, Gershon MD et al. Stimulation-dependent regulation of secretory vesicle pH, volume, and quantal size.J Physiol (Lond) 542: 453–476, 2002.Google Scholar
  80. 80.
    Przedborski S, Jackson-Lewis V, Muthane U, Jiang H, Ferreira M, Naini A-B, Fahn S. Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity.Ann Neurol 34: 715–723, 1993.PubMedGoogle Scholar
  81. 81.
    Gluck M, Ehrhart J, Jayatilleke E, Zeevalk GD. Inhibition of brain mitochondrial respiration by dopamine: involvement of H(2)O(2) and hydroxyl radicals but not glutathione-protein-mixed disulfides.J Neurochem 82: 66–74, 2002.PubMedGoogle Scholar
  82. 82.
    Przedborski S, Chen Q, Vila M, Giasson BI, Djaldatti R, Vukosavic S et al. Oxidative post-translational modifications of alpha-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease.J Neurochem 76: 637–640, 2001.PubMedGoogle Scholar
  83. 83.
    Blanchard-Fillion B, Souza JM, Friel T, Jiang GC, Vrana K, Sharov V et al. Nitration and inactivation of tyrosine hydroxylase by peroxynitrite.J Biol Chem 276: 46017–46023, 2001.PubMedGoogle Scholar
  84. 84.
    Miller FE, Heffner TG, Kotake C, Seiden LS. Magnitude and duration of hyperactivity following neonatal 6-hydroxydopamine is related to the extent of brain dopamine depletion.Brain Res 229: 123–132, 1981.PubMedGoogle Scholar
  85. 85.
    Cubells JF, Rayport S, Rajendran G, Sulzer D. Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress.J Neurosci 14: 2260–2271, 1994.PubMedGoogle Scholar
  86. 86.
    Giovanni A, Liang LP, Hastings TG, Zigmond MJ. Estimating hydroxyl radical content in rat brain using systemic and intraven-tricular salicylate: impact of methamphetamine.J Neurochem 64: 1819–1825, 1995.PubMedGoogle Scholar
  87. 87.
    Sulzer D, Rayport S. Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action.Neuron 5: 797–808, 1990.PubMedGoogle Scholar
  88. 88.
    Hastings TG, Berman SB. Dopamine-induced toxicity and quinone modification of proteins: implications for Parkinson’s disease. In: Role of catechol quinone species in cellular toxicity (Creveling CR, ed), pp 69–89. Johnson City, TN: F. P. Graham, 1999.Google Scholar
  89. 89.
    Sulzer D, Zecca L. Intraneuronal dopamine-quinone synthesis: a review.Neurotoxicity Res 1: 181–195, 2000.Google Scholar
  90. 90.
    Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones.Mol Pharmacol 14: 633–643, 1978.PubMedGoogle Scholar
  91. 91.
    Whitehead RE, Ferrer JV, Javitch JA, Justice JB. Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter.J Neurochem 76: 1242–1251, 2001.PubMedGoogle Scholar
  92. 92.
    Lotharius J, O’Malley KL. The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium (MPP+) triggers intracellular dopamine oxidation: a novel mechanism of toxicity.J Biol Chem 275: 38581–38588, 2000.PubMedGoogle Scholar
  93. 93.
    Davidson C, Gow AJ, Lee TH, Ellinwood EH. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment.Brain Res Brain Res Rev 36: 1–22, 2001.PubMedGoogle Scholar
  94. 94.
    Matthews RT, Yang L, Beal MF. S-Methylthiocitrulline, a neuronal nitric oxide synthase inhibitor, protects against malonate and MPTP neurotoxicity.Exp Neurol 143: 282–286, 1997.PubMedGoogle Scholar
  95. 95.
    Zecca L, Tampellini D, Gatti A, Crippa R, Eisner M, Sulzer D et al. The neuromelanin of human substantia nigra and its interaction with metals.J Neural Transm 109: 663–672, 2002.PubMedGoogle Scholar
  96. 96.
    Berg D, Gerlach M, Youdim MB, Double KL, Zecca L, Riederer P et al. Brain iron pathways and their relevance to Parkinson’s disease.J Neurochem 79: 225–236, 2001.PubMedGoogle Scholar
  97. 97.
    Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles.Proc Natl Acad Sci USA 97: 11869–11874, 2000.PubMedGoogle Scholar
  98. 98.
    Larsen KE, Sulzer D. Autophagy in neurons: a review.Histol Histopathol 17: 897–908, 2002.PubMedGoogle Scholar
  99. 99.
    Liu Y, Peter D, Roghani A, Schuldiner S, Prive GG, Eisenberg D et al. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter.Cell 70: 539–551, 1992.PubMedGoogle Scholar
  100. 100.
    Pothos EN, Larsen KE, Krantz DE, Liu Y-J, Edwards RH, Sulzer D. Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size.J Neurosci 20: 7297–7306, 2000.PubMedGoogle Scholar
  101. 101.
    Larsen KE, Fon E, LaVoie M, Hastings TG, Edwards RH, Sulzer D. Methamphetamine-induced degeneration of dopaminergic neurons occurs via autophagy triggered by elevated cytosolic dopamine.J Neurosci 22: 8951–8960, 2002.PubMedGoogle Scholar
  102. 102.
    Fumagalli F, Gainetdinov RR, Wang YM, Valenzano KJ, Miller GW, Caron MG. Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice.J Neurosci 19: 2424–2431, 1999.PubMedGoogle Scholar
  103. 103.
    Gainetdinov RR, Fumagalli F, Wang YM, Jones SR, Levey AI, Miller GW et al. Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice.J Neurochem 70: 1973–1978, 1998.PubMedGoogle Scholar
  104. 104.
    Cookson MR. Pathways to Parkinsonism.Neuron 37: 7–10, 2003.PubMedGoogle Scholar
  105. 105.
    Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B. Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by pael-R in Drosophila.Neuron 37: 911–924, 2003.PubMedGoogle Scholar
  106. 106.
    Ribeiro CS, Carneiro K, Ross CA, Menezes JR, Engelender S. Synphilin-1 is developmentally localized to synaptic terminals, and its association with synaptic vesicles is modulated by alpha-synuclein.J Biol Chem 277: 23927–23933, 2002.PubMedGoogle Scholar
  107. 107.
    Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA. Expression of A53T mutant, but not wild-type, α-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death.J Neurosci 21: 9549–9560, 2001.PubMedGoogle Scholar
  108. 108.
    Cuervo AM, Dice JF. Lysosomes, a meeting point of proteins, chaperones, and proteases.J Mol Med 76: 6–12, 1998.PubMedGoogle Scholar
  109. 109.
    Iacopino A, Christakos S, German D, Sonsalla PK, Altar CA. Calbindin-D28K-containing neurons in animal models of neurodegeneration: possible protection from excitotoxicity.Brain Res Mol Brain Res 13: 251–261, 1992.PubMedGoogle Scholar
  110. 110.
    Peter D, Liu Y, Sternini C, de Giorgio R, Brecha N, Edwards RH. Differential expression of two vesicular monoamine transporters.J Neurosci 15: 6179–6188, 1995.PubMedGoogle Scholar
  111. 111.
    Staal RG, Hogan KA, Liang CL, German DC, Sonsalla PK. In vitro studies of striatal vesicles containing the vesicular monoamine transporter (VMAT2): rat versus mouse differences in sequestration of 1-methyl-4-phenylpyridinium.J Pharmacol Exp Ther 293: 329–335, 2000.PubMedGoogle Scholar
  112. 112.
    Liss B, Neu A, Roeper J. The weaver mouse gain-of-function phenotype of dopaminergic midbrain neurons is determined by coactivation of wvGirk2 and K-ATP channels.J Neurosci 19: 8839–8848, 1999.PubMedGoogle Scholar
  113. 113.
    Burke RE, Antonelli M, Sulzer D. Glial cell line-derived neurotrophic growth factor inhibits apoptotic death of postnatal substantia nigra dopamine neurons in primary culture.J Neurochem 71: 517–525, 1998.PubMedGoogle Scholar
  114. 114.
    Offen D, Elkon H, Melamed E. Apoptosis as a general cell death pathway in neurodegenerative diseases.J Neural Transm Suppl 58: 153–166, 2000.PubMedGoogle Scholar
  115. 115.
    Przedborksi S, Vila M. MPTP: a review of its mechanisms of neurotoxicity.Clin Neurosci Res 1: 407–418, 2001.Google Scholar
  116. 116.
    Vila M, Jackson-Lewis V, Guegan C, Wu DC, Teismann P, Choi DK et al. The role of glial cells in Parkinson’s disease.Curr Opin Neurol 14: 483–489, 2001.PubMedGoogle Scholar
  117. 117.
    Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R. Activation of microglia by human neuromelanin is NF-κB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease.FASEB J 17: 500–502, 2003.PubMedGoogle Scholar
  118. 118.
    Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S et al. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration.Proc Natl Acad Sci USA 100: 5473–5478, 2003.PubMedGoogle Scholar
  119. 119.
    Parkinson Study Group. Effect of deprenyl on the progression of disability in early Parkinson’s disease.N Engl J Med 321: 1364–1371, 1989.Google Scholar
  120. 120.
    Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease.N Engl J Med 328: 176–183, 1993.Google Scholar
  121. 121.
    Myllyla VV, Sotaniemi KA, Vuorinen JA, Heinonen E. Selegiline as initial treatment in de novo parkinsonian patients.Neurology 42: 339–343, 1992.PubMedGoogle Scholar
  122. 122.
    Palhagen S, Heinonen EH, Hagglund J, Kaugesaar T, Kontants H, Maki-Ikola O et al. Selegiline delays the onset of disability in de novo parkinsonian patients. Swedish Parkinson Study Group.Neurology, 51: 520–525, 1998.PubMedGoogle Scholar
  123. 123.
    Giladi N, McDermott MP, Fahn S, Przedborski S, Jankovic J, Stern M et al. Freezing of gait in PD: prospective assessment in the DATATOP cohort.Neurology 56: 1712–1721, 2001.PubMedGoogle Scholar
  124. 124.
    Shoulson I, Oakes D, Fahn S, Lang A, Langston JW, LeWitt P et al. Impact of sustained deprenyl (selegiline) in levodopa-treated Parkinson’s disease: a randomized placebo-controlled extension of the deprenyl and tocopherol antioxidative therapy of parkinsonism trial.Ann Neurol 51: 604–612, 2002.PubMedGoogle Scholar
  125. 125.
    Beal MF. Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis.Ann Neurol 44: S110-S114, 1998.PubMedGoogle Scholar
  126. 126.
    Benazzouz A, Boraud T, Dubedat P, Boireau A, Stutzmann JM, Gross C. Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study.Eur J Pharmacol 284: 299–307, 1995.PubMedGoogle Scholar
  127. 127.
    Barneoud P, Mazadier M, Miquet JM, Parmentier S, Dubedat P, Doble A et al. Neuroprotective effects of riluzole on a model of Parkinson’s disease in the rat.Neuroscience 74: 971–983, 1996.PubMedGoogle Scholar
  128. 128.
    Boireau A, Dubedat P, Bordier F, Imperato A, Moussaoui S. The protective effect of riluzole in the MPTP model of Parkinson’s disease in mice is not due to a decrease in MPP(+) accumulation.Neuropharmacology 39: 1016–1020, 2000.PubMedGoogle Scholar
  129. 129.
    Obinu MC, Reibaud M, Blanchard V, Moussaoui S, Imperato A. Neuroprotective effect of riluzole in a primate model of Parkinson’s disease: behavioral and histological evidence.Mov Disord 17: 13–19, 2002.PubMedGoogle Scholar
  130. 130.
    Jankovic J, Hunter C. A double-blind, placebo-controlled and longitudinal study of riluzole in early Parkinson’s disease.Parkinsonism Relat Disord 8: 271–276, 2002.PubMedGoogle Scholar
  131. 131.
    Rascol O, Olanow W, Brooks D, Koch G, Truffinet P, Bejuit R. Effect of riluzole on Parkinson’s disease progression: a double-blind placebo-controlled study.Neurology 60[Suppl 1]: A288, 2003.Google Scholar
  132. 132.
    Pothos E, Davila V, Sulzer D. Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size.J Neurosci 18: 4106–4118, 1998.PubMedGoogle Scholar
  133. 133.
    Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L et al. Functional recovery in parkinsonian monkeys treated with GDNF.Nature 21: 252–255, 1996.Google Scholar
  134. 134.
    Grondin R, Zhang Z, Yi A, Cass WA, Maswood N, Andersen AH et al. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys.Brain 125: 2191–2201, 2002.PubMedGoogle Scholar
  135. 135.
    Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ER Jr et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD.Neurology 60: 69–73, 2003.PubMedGoogle Scholar
  136. 136.
    Gill SS, Patel NK, O’Sullivan K, Brooks DJ, Hotton GR, Svendsen C et al. Intraparenchymal putaminal administration of glialderived neurotrophic factor in the treatment of advanced Parkinson’s disease.Neurology 58[Suppl 3]: A241, 2002.Google Scholar
  137. 137.
    Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease.Science 290: 767–773, 2000.PubMedGoogle Scholar
  138. 138.
    Steiner JP, Hamilton GS, Ross DT, Valentine HL, Guo H, Connolly MA et al. Neurotrophic immunophilin ligands stimulate structural and functional recovery in neurodegenerative animal models.Proc Natl Acad Sci USA 94: 2019–2024, 1997.PubMedGoogle Scholar
  139. 139.
    Guo X, Dawson VL, Dawson TM. Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain dopaminergic neurons.Eur J Neurosci, 13: 1683–1693, 2001.PubMedGoogle Scholar
  140. 140.
    Tanaka K, Fujita N, Yoshioka M, Ogawa N. Immunosuppressive and non-immunosuppressive immunophilin ligands improve H(2)O(2)-induced cell damage by increasing glutathione levels in NG108-15 cells.Brain Res 889: 225–228, 2001.PubMedGoogle Scholar
  141. 141.
    Tanaka K, Yoshioka M, Miyazaki I, Fujita N, Ogawa N. GPI1046 prevents dopaminergic dysfunction by activating glutathione system in the mouse striatum.Neurosci Lett 321: 45–48, 2002.PubMedGoogle Scholar
  142. 142.
    Harper S, Bilsland J, Young L, Bristow L, Boyce S, Mason G et al. Analysis of the neurotrophic effects of GPI-1046 on neuron survival and regeneration in culture and in vivo.Neuroscience 88: 257–267, 1999.PubMedGoogle Scholar
  143. 143.
    Bocquet A, Lorent G, Fuks B, Grimee R, Talaga P, Daliers J et al. Failure of GPI compounds to display neurotrophic activity in vitro and in vivo.Eur J Pharmacol 415: 173–180, 2001.PubMedGoogle Scholar
  144. 144.
    Emborg ME, Shin P, Roitberg B, Sramek JG, Chu Y, Stebbins GT et al. Systemic administration of the immunophilin ligand GPI 1046 in MPTP-treated monkeys.Exp Neurol 168: 171–182, 2001.PubMedGoogle Scholar
  145. 145.
    Eberling JL, Pivirotto P, Bringas J, Steiner JP, Kordower JH, Chu Y et al. The immunophilin ligand GPI-1046 does not have neuroregenerative effects in MPTP-treated monkeys.Exp Neurol 178: 236–242, 2002.PubMedGoogle Scholar
  146. 146.
    Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P et al. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease.J Neurochem 55: 2142–2145, 1990.PubMedGoogle Scholar
  147. 147.
    Shults CW, Haas RH, Passov D, Beal MF. Coenzyme Q(10) levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects.Ann Neurol 42: 261–264, 1997.PubMedGoogle Scholar
  148. 148.
    Matsubara T, Azuma T, Yoshida S, Yamagami T. Serum coenzyme Q10 level in Parkinson syndrome. In: Biomedical and clinical aspects of coenzyme Q10 (Folkers K, Littarru GP, Yamagami T, eds), pp 159–166. New York: Elsevier Science, 1991.Google Scholar
  149. 149.
    Matthews RT, Yang L, Browne S, Baik M, Beal MF. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects.Proc Natl Acad Sci USA, 95: 8892–8897, 1998.PubMedGoogle Scholar
  150. 150.
    Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S et al. Effects of coenzyme Q(10) in early Parkinson disease — Evidence of slowing of the functional decline.Arch Neurol 59: 1541–1550, 2002.PubMedGoogle Scholar
  151. 151.
    Beal MF. Bioenergetic approaches for neuroprotection in Parkinson’s disease.Ann Neurol 53[Suppl 3]: S39-S47; discussion S47-S48, 2003.PubMedGoogle Scholar
  152. 152.
    Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease.Proc Natl Acad Sci USA 98: 14669–14674, 2001.PubMedGoogle Scholar
  153. 153.
    Wu D, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease.J Neurosci 22: 1763–1771, 2002.PubMedGoogle Scholar
  154. 154.
    Tatton WG. Selegiline can mediate neuronal rescue rather than neuronal protection.Mov Disord 8: S20-S30, 1993.PubMedGoogle Scholar
  155. 155.
    Waldmeier PC, Spooren WP, Hengerer B. CGP 3466 protects dopaminergic neurons in lesion models of Parkinson’s disease.Naunyn Schmiedebergs Arch Pharmacol 362: 526–537, 2000.PubMedGoogle Scholar
  156. 156.
    Markey SP, Johannessen JN, Chiueh CC, Burns RS, Herkenham MA. Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism.Nature 311: 464–467, 1984.PubMedGoogle Scholar
  157. 157.
    Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity.Proc Natl Acad Sci USA 82: 2173–2177, 1985.PubMedGoogle Scholar
  158. 158.
    Duyckaerts C. Images. Les corps et prolongements de Lewy.Rev Neurol (Paris) 156: 800–801, 2000.Google Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2004

Authors and Affiliations

  1. 1.Department of NeurologyColumbia UniversityNew York
  2. 2.Neurological InstituteNew York

Personalised recommendations