, Volume 2, Issue 3, pp 513–524 | Cite as

Animal models of focal dystonia



Animal models indicate that the abnormal movements of focal dystonia result from disordered sensorimotor integration. Sensorimotor integration involves a comparison of sensory information resulting from a movement with the sensory information expected from the movement. Unanticipated sensory signals identified by sensorimotor processing serve as signals to modify the ongoing movement or the planning for subsequent movements. Normally, this process is an effective mechanism to modify neural commands for ongoing movement or for movement planning. Animal models of the focal dystonias spasmodic torticollis, writer’s cramp, and benign essential blepharospasm reveal different dysfunctions of sensorimotor integration through which dystonia can arise. Animal models of spasmodic torticollis demonstrate that modifications in a variety of regions are capable of creating abnormal head postures. These data indicate that disruption of neural signals in one structure may mutate the activity pattern of other elements of the neural circuits for movement. The animal model of writer’s cramp demonstrates the importance of abnormal sensory processing in generating dystonic movements. Animal models of blepharospasm illustrate how disrupting motor adaptation can produce dystonia. Together, these models show mechanisms by which disruptions in sensorimotor integration can create dystonic movements.

Key Words

Spasmodic torticollis writer’s cramp blepharospasm sensorimotor integration dystonia animal models 


  1. 1.
    Berardelli A, Rothwell JC, Hallett M, Thompson PD, Manfredi M, Marsden CD. The pathophysiology of primary dystonia. Brain 121(Pt 7): 1195–1212, 1998.PubMedGoogle Scholar
  2. 2.
    Hallett M. Physiology of dystonia. Adv Neurol 78: 11–18, 1998.PubMedGoogle Scholar
  3. 3.
    Berardelli A, Curra A. Pathophysiology and treatment of cranial dystonia. Mov Disord 17 [Suppl 2]: S70-S74, 2002.PubMedGoogle Scholar
  4. 4.
    Fahn S. Blepharospasm: a form of focal dystonia. Adv Neurol 49: 125–133, 1988.PubMedGoogle Scholar
  5. 5.
    Bressman SB. Dystonia: phenotypes and genotypes. Rev Neurol (Paris) 159(10 Pt l): 849–856, 2003.Google Scholar
  6. 6.
    Saunders-Pullman R, Shriberg J, Shanker V, Bressman SB. Penetrance and expression of dystonia genes. Adv Neurol 94: 121–125, 2004.PubMedGoogle Scholar
  7. 7.
    Bressman SB. Dystonia genotypes, phenotypes, and classification. Adv Neurol 94: 101–107, 2004.PubMedGoogle Scholar
  8. 8.
    Fahn S, Bressman SB, Marsden CD. Classification of dystonia. Adv Neurol 78: 1–10, 1998.PubMedGoogle Scholar
  9. 9.
    Hallett M. Blepharospasm: recent advances. Neurology 59: 1306–1312, 2002.PubMedGoogle Scholar
  10. 10.
    Pettigrew LC, Jankovic J. Hemidystonia: a report of 22 patients and a review of the literature. J Neurol Neurosurg Psychiatry 48: 650–657, 1985.PubMedGoogle Scholar
  11. 11.
    Greene P, Kang UJ, Fahn S. Spread of symptoms in idiopathic torsion dystonia. Mov Disord 10: 143–152, 1995.PubMedGoogle Scholar
  12. 12.
    Jankovic J, Shale H. Dystonia in musicians. Semin Neurol 9: 131–135, 1989PubMedGoogle Scholar
  13. 13.
    Lim VK, Altenmuller E, Bradshaw JL. Focal dystonia: current theories. Hum Mov Sci 20: 875–914, 2001.PubMedGoogle Scholar
  14. 14.
    O’Riordan S, Raymond D, Lynch T, Saunders-Pullman R, Bressman SB, Daly L, et al. Age at onset as a factor in determining the phenotype of primary torsion dystonia. Neurology 63: 1423–1426, 2004.PubMedGoogle Scholar
  15. 15.
    Ozelius LJ, Hewett JW, Page CE, Bressman SB, Kramer PL, Shalish C, et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 17: 40–48, 1997.PubMedGoogle Scholar
  16. 16.
    Breakefield XO, Kamm C, Hanson PI. TorsinA: movement at many levels. Neuron 31: 9–12, 2001.PubMedGoogle Scholar
  17. 17.
    Goodchild RE, Dauer WT. Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc Natl Acad Sci USA 101: 847–852, 2004.PubMedGoogle Scholar
  18. 18.
    Naismith TV, Heuser JE, Breakefield XO, Hanson PI. TorsinA in the nuclear envelope. Proc Nail Acad Sci USA 101: 7612–7617, 2004.Google Scholar
  19. 19.
    Dauer W, Goodchild R. Mouse models of torsinA dysfunction. Adv Neurol 94: 67–72, 2004.PubMedGoogle Scholar
  20. 20.
    Caldwell GA, Cao S, Sexton EG, Gelwix CC, Bevel JP, Caldwell KA. Suppression of polyglutamine-induced protein aggregation in Caenorhabditis elegans by torsin proteins. Hum Mol Genet 12: 307–319, 2003.PubMedGoogle Scholar
  21. 21.
    Opal P, Tintner R, Jankovic J, Leung J, Breakefield XO, Friedman J, et al. Intrafamilial phenotypic variability of the DYT1 dystonia: from asymptomatic TOR1A gene carrier status to dystonic storm. Mov Disord 17: 339–345, 2002.PubMedGoogle Scholar
  22. 22.
    Edwards MJ, Huang YZ, Wood NW, Rothwell JC, Bhatia KP. Different patterns of electrophysiological deficits in manifesting and non-manifesting carriers of the DYT1 gene mutation. Brain 126(Pt 9): 2074–2080, 2003.PubMedGoogle Scholar
  23. 23.
    Eidelberg D, Moeller JR, Antonini A, Kazumata K, Nakamura T, Dhawan V, et al. Functional brain networks in DYT1 dystonia. Ann Neurol 44: 303–312, 1998.PubMedGoogle Scholar
  24. 24.
    Eidelberg D. Abnormal brain networks in DYT1 dystonia. Adv Neurol 78: 127–133, 1998.PubMedGoogle Scholar
  25. 25.
    Trost M, Carbon M, Edwards C, Ma Y, Raymond D, Mentis MJ, et al. Primary dystonia: is abnormal functional brain architecture linked to genotype? Ann Neurol 52: 853–856, 2002.PubMedGoogle Scholar
  26. 26.
    Augood SJ, Penney JB Jr, Friberg IK, Breakefield XO, Young AB, Ozelius LJ, et al. Expression of the early-onset torsion dystonia gene (DYT1) in human brain. Ann Neurol 43: 669–673, 1998.PubMedGoogle Scholar
  27. 27.
    Augood SJ, Martin DM, Ozelius LJ, Breakefield XO, Penney JB Jr, Standaert DG. Distribution of the mRNAs encoding torsinA and torsinB in the normal adult human brain. Ann Neurol 46: 761–769, 1999.PubMedGoogle Scholar
  28. 28.
    Konakova M, Pulst SM. Immunocytochemical characterization of torsin proteins in mouse brain. Brain Res 922: 1–8, 2001.PubMedGoogle Scholar
  29. 29.
    Tinazzi M, Rosso T, Fiaschi A. Role of the somatosensory system in primary dystonia. Mov Disord 18: 605–622, 2003.PubMedGoogle Scholar
  30. 30.
    Aglioti SM, Fiorio M, Forster B, Tinazzi M. Temporal discrimination of cross-modal and unimodal stimuli in generalized dystonia. Neurology 60: 782–785, 2003.PubMedGoogle Scholar
  31. 31.
    Abbruzzese G, Berardelli A. Sensorimotor integration in movement disorders. Mov Disord 18: 231–240, 2003.PubMedGoogle Scholar
  32. 32.
    Miall RC, Weil DJ, Wolpert DM, Stein JF. Is the cerebellum a Smith predictor? J Mot Behav 25: 203–216, 1993.PubMedGoogle Scholar
  33. 33.
    Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann NY Acad Sci 978: 302–317, 2002.PubMedGoogle Scholar
  34. 34.
    Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol 14: 225–232, 2004.PubMedGoogle Scholar
  35. 35.
    Nixon PD. The role of the cerebellum in preparing responses to predictable sensory events. Cerebellum 2: 114–122, 2003.PubMedGoogle Scholar
  36. 36.
    Ghilardi MF, Carbon M, Silvestri G, Dhawan V, Tagliati M, Bressman S, et al. Impaired sequence learning in carriers of the DYT1 dystonia mutation. Ann Neurol 54: 102–109, 2003.PubMedGoogle Scholar
  37. 37.
    Hallett M, Daroff RB. Blepharospasm: report of a workshop. Neurology 46: 1213–1218, 1996.PubMedGoogle Scholar
  38. 38.
    Marsden CD. The focal dystonias. Clin Neuropharmacol 9[Suppl 2]: S49-S60, 1986.PubMedGoogle Scholar
  39. 39.
    Chen R, Hallett M. Focal dystonia and repetitive motion disorders. Clin Orthop 351: 102–106, 1998.PubMedGoogle Scholar
  40. 40.
    Hallett M. The neurophysiology of dystonia. Arch Neurol 55: 601–603, 1998.PubMedGoogle Scholar
  41. 41.
    Dauer WT, Burke RE, Greene P, Fahn S. Current concepts on the clinical features, aetiology and management of idiopathic cervical dystonia. Brain 121 (Pt 4): 547–560, 1998.PubMedGoogle Scholar
  42. 42.
    Hallett M. Dystonia: abnormal movements result from loss of inhibition. Adv Neurol 94: 1–9, 2004.PubMedGoogle Scholar
  43. 43.
    Tinazzi M, Fiorio M, Bertolasi L, Aglioti SM. Timing of tactile and visuo-tactile events is impaired in patients with cervical dystonia. J Neurol 251: 85–90, 2004.PubMedGoogle Scholar
  44. 44.
    Thickbroom GW, Byrnes ML, Stell R, Mastaglia FL. Reversible reorganisation of the motor cortical representation of the hand in cervical dystonia. Mov Disord 18: 395–402, 2003.PubMedGoogle Scholar
  45. 45.
    Eidelberg D. Functional brain networks in movement disorders. Curr Opin Neurol 11: 319–326, 1998.PubMedGoogle Scholar
  46. 46.
    Frima N, Rome SM, Grunewald RA. The effect of fatigue on abnormal vibration induced illusion of movement in idiopathic focal dystonia. J Neurol Neurosurg Psychiatry 74: 1154–1156, 2003.PubMedGoogle Scholar
  47. 47.
    Schramm A, Reiners K, Naumann M. Complex mechanisms of sensory tricks in cervical dystonia. Mov Disord 19: 452–458, 2004.PubMedGoogle Scholar
  48. 48.
    Munchau A, Coma S, Gresty MA, Bhatia KP, Palmer JD, Dressler D, et al. Abnormal interaction between vestibular and voluntary head control in patients with spasmodic torticollis. Brain 124(Pt l): 47–59, 2001.PubMedGoogle Scholar
  49. 49.
    Crossman AR, Sambrook MA. Experimental torticollis in the monkey produced by unilateral 6-hydroxy-dopamine brain lesions. Brain Res 149: 498–502, 1978.PubMedGoogle Scholar
  50. 50.
    Malouin F, Bedard PJ. Frontal torticollis (head tilt) induced by electrolytic lesion and kainic acid injection in monkeys and cats. Exp Neurol 78: 551–560, 1982.PubMedGoogle Scholar
  51. 51.
    Malouin F, Bedard PJ. Head turning induced by unilateral intracaudate thyrotropin-releasing hormone (TRH) injection in the cat. Eur J Pharmacol 81: 559–567, 1982.PubMedGoogle Scholar
  52. 52.
    Malouin F, Bedard PJ. Evaluation of head motility and posture in cats with horizontal torticollis. Exp Neurol 81: 559–570, 1983.PubMedGoogle Scholar
  53. 53.
    Henderson JM, Watson S, Halliday GM, Heinemann T, Gerlach M. Relationships between various behavioural abnormalities and nigrostriatal dopamine depletion in the unilateral 6-OHDA-lesioned rat. Behav Brain Res 139: 105–113, 2003.PubMedGoogle Scholar
  54. 54.
    Wirshing WC. Movement disorders associated with neuroleptic treatment. J Clin Psychiatry 62 [Suppl 21]: 15–18, 2001.PubMedGoogle Scholar
  55. 55.
    Ramesh S, Sagar R. Antipsychotic induced movement disorders. Indian J Med Sci 55: 483–487, 2001.PubMedGoogle Scholar
  56. 56.
    Houltram B, Scanlan M. Extrapyramidal side effects. Nurs Stand 18: 39–41, 2004.PubMedGoogle Scholar
  57. 57.
    Casey DE. Pathophysiology of antipsychotic drug-induced movement disorders. J Clin Psychiatry 65 [Suppl 9]: 25–28, 2004.PubMedGoogle Scholar
  58. 58.
    Jeanjean AP, Laterre EC, Maloteaux JM. Neuroleptic binding to σ receptors: possible involvement in neuroleptic-induced acute dystonia. Biol Psychiatry 41: 1010–1019, 1997.PubMedGoogle Scholar
  59. 59.
    Walker FO, Walker JM, Matsumoto RR, Bowen WD. Torticollis, midbrain, and σ receptors. Mov Disord 5: 265, 1990.PubMedGoogle Scholar
  60. 60.
    Walker JM, Matsumoto RR, Bowen WD, Gans DL, Jones KD, Walker FO. Evidence for a role of haloperidol-sensitive σ-′ opiate’ receptors in the motor effects of antipsychotic drugs. Neurology 38: 961–965, 1988.PubMedGoogle Scholar
  61. 61.
    Walker JM, Bowen WD, Walker FO, Matsumoto RR, De Costa B, Rice KC. σ Receptors: biology and function. Pharmacol Rev 42: 355–402, 1990.PubMedGoogle Scholar
  62. 62.
    Largent BL, Gundlach AL, Snyder SH. Psychotomimetic opiate receptors labeled and visualized with (+)-[3H]3-(3-hydroxy-phenyl)-N-(l-propyl)piperidine. Proc Natl Acad Sci USA 81: 4983–4987, 1984.PubMedGoogle Scholar
  63. 63.
    Gundlach AL, Largent BL, Snyder SH. Autoradiographic localization of σ receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(l-propy-l)piperidine. J Neurosci 6: 1757–1770, 1986.PubMedGoogle Scholar
  64. 64.
    Shamsul Ola M, Moore P, El-Sherbeny A, Roon P, Agarwal N, Sarthy VP, et al. Expression pattern of σ receptor 1 mRNA and protein in mammalian retina. Brain Res Mol Brain Res 95: 86–95, 2001.Google Scholar
  65. 65.
    Okumura K, Ujike H, Akiyama K, Kuroda S. BMY-14802 reversed the cr receptor agonist-induced neck dystonia in rats. J Neural Transm 103: 1153–1161, 1996.PubMedGoogle Scholar
  66. 66.
    Matsumoto RR, Pouw B. Correlation between neuroleptic binding to σ(1) and σ(2) receptors and acute dystonic reactions. Eur J Pharmacol 401: 155–160, 2000.PubMedGoogle Scholar
  67. 67.
    Nakazawa M, Kobayashi T, Matsuno K, Mita S. Possible involvement of a σ receptor subtype in the neck dystonia in rats. Pharmacol Biochem Behav 62: 123–126, 1999.PubMedGoogle Scholar
  68. 68.
    Matsumoto RR, Walker JM. Inhibition of rubral neurons by a specific ligand for σ receptors. Eur J Pharmacol 158: 161–165, 1988.PubMedGoogle Scholar
  69. 69.
    Matsumoto RR, Walker JM. Iontophoretic effects of σ ligands on rubral neurons in the rat. Brain Res Bull 29: 419–425, 1992.PubMedGoogle Scholar
  70. 70.
    Matsumoto RR, Bowen WD, de Costa BR, Houk JC. Relationship between modulation of the cerebellorubrospinal system in the in vitro turtle brain and changes in motor behavior in rats: effects of novel σ ligands. Brain Res Bull 48: 497–508, 1999.PubMedGoogle Scholar
  71. 71.
    Hassler R, Hess WR. [Experimental and anatomical findings in rotatory movements and their nervous apparatus.] Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr 192: 488–526, 1954.PubMedGoogle Scholar
  72. 72.
    Kiss Z. Everything old is new again? Science 297: 335–336; author reply 335–336, 2002.PubMedGoogle Scholar
  73. 73.
    Sano K, Yoshioka M, Mayanagi Y, Sekino H, Yoshimasu N. Stimulation and destruction of and around the interstitial nucleus of Cajal in man. Confin Neurol 32: 118–125, 1970.PubMedGoogle Scholar
  74. 74.
    Sano K, Sekino H, Tsukamoto Y, Yoshimasu N, Ishijima B. Stimulation and destruction of the region of the interstitial nucleus in cases of torticollis and see-saw nystagmus. Confin Neurol 34: 331–338, 1972.PubMedGoogle Scholar
  75. 75.
    Klier EM, Wang H, Constantin AG, Crawford JD. Midbrain control of three-dimensional head orientation. Science 295: 1314–1316, 2002.PubMedGoogle Scholar
  76. 76.
    Medendorp WP, van Gisbergen JA, Horstink MW, Gielen CC. Donders’ law in torticollis. J Neurophysiol 82: 2833–2838, 1999.PubMedGoogle Scholar
  77. 77.
    Ohashi T, Fukushima K, Chin S, Harada T, Yoshida K, Akino M, et al. Ocular tilt reaction with vertical eye movement palsy caused by localized unilateral midbrain lesion. J Neuroophthalmol 18: 40–42, 1998.PubMedGoogle Scholar
  78. 78.
    Halmagyi GM, Brandt T, Dieterich M, Curthoys IS, Stark RJ, Hoyt WF. Tonic contraversive ocular tilt reaction due to unilateral meso-diencephalic lesion. Neurology 40: 1503–1509, 1990.PubMedGoogle Scholar
  79. 79.
    Galardi G, Perani D, Grassi F, Bressi S, Amadio S, Antoni M, et al. Basal ganglia and thalamo-cortical hypermetabolism in patients with spasmodic torticollis. Acta Neurol Scand 94: 172–176, 1996.PubMedGoogle Scholar
  80. 80.
    Ibanez V, Sadato N, Karp B, Deiber MP, Hallett M. Deficient activation of the motor cortical network in patients with writer’s cramp. Neurology 53: 96–105, 1999.PubMedGoogle Scholar
  81. 81.
    Levy LM, Hallett M. Impaired brain GABA in focal dystonia. Ann Neurol 51: 93–101, 2002.PubMedGoogle Scholar
  82. 82.
    Tolosa E, Montserrat L, Bayes A. Blink reflex studies in patients with focal dystonias. Adv Neurol 50: 517–524, 1988.PubMedGoogle Scholar
  83. 83.
    Grunewald RA, Yoneda Y, Shipman JM, Sagar HJ. Idiopathic focal dystonia: a disorder of muscle spindle afferent processing? Brain 120(Pt 12): 2179–2185, 1997.PubMedGoogle Scholar
  84. 84.
    Yoneda Y, Rome S, Sagar HJ, Grunewald RA. Abnormal perception of the tonic vibration reflex in idiopathic focal dystonia. Eur J Neurol 7: 529–533, 2000.PubMedGoogle Scholar
  85. 85.
    Perimutter JS, Stambuk MK, Markham J, Black KJ, McGee-Minnich L, Jankovic J, et al. Decreased [18F]spiperone binding in putamen in idiopathic focal dystonia. J Neurosci 17: 843–850, 1997.Google Scholar
  86. 86.
    Candia V, Wienbruch C, Elbert T, Rockstroh B, Ray W. Effective behavioral treatment of focal hand dystonia in musicians alters somatosensory cortical organization. Proc Natl Acad Sci USA 100: 7942–7946, 2003.PubMedGoogle Scholar
  87. 87.
    Bara-Jimenez W, Catalan MJ, Hallett M, Gerloff C. Abnormal somatosensory homunculus in dystonia of the hand. Ann Neurol 44: 828–831, 1998.PubMedGoogle Scholar
  88. 88.
    Murase N, Kaji R, Shimazu H, Katayama-Hirota M, Ikeda A, Kohara N, et al. Abnormal premovement gating of somatosensory input in writer’s cramp. Brain 123(Pt 9): 1813–1829, 2000.PubMedGoogle Scholar
  89. 89.
    Meunier S, Garnero L, Ducorps A, Mazieres L, Lehericy S, du Montcel ST, et al. Human brain mapping in dystonia reveals both endophenotypic traits and adaptive reorganization. Ann Neurol 50: 521–527, 2001.PubMedGoogle Scholar
  90. 90.
    Butterworth S, Francis S, Kelly E, McGlone F, Bowtell R, Sawle GV. Abnormal cortical sensory activation in dystonia: an fMRI study. Mov Disord 18: 673–682, 2003.PubMedGoogle Scholar
  91. 91.
    Elbert T, Candia V, Altenmuller E, Rau H, Sterr A, Rockstroh B, et al. Alteration of digital representations in somatosensory cortex in focal hand dystonia. Neuroreport 9: 3571–3575, 1998.PubMedGoogle Scholar
  92. 92.
    Tinazzi M, Fiaschi A, Frasson E, Fiorio M, Cortese F, Aglioti SM. Deficits of temporal discrimination in dystonia are independent from the spatial distance between the loci of tactile stimulation. Mov Disord 17: 333–338, 2002.PubMedGoogle Scholar
  93. 93.
    Abbruzzese G, Marchese R, Buccolieri A, Gasparetto B, Trompetto C. Abnormalities of sensorimotor integration in focal dystonia: a transcranial magnetic stimulation study. Brain 124(Pt 3): 537–545, 2001.PubMedGoogle Scholar
  94. 94.
    Bara-Jimenez W, Shelton P, Hallett M. Spatial discrimination is abnormal in focal hand dystonia. Neurology 55: 1869–1873, 2000.PubMedGoogle Scholar
  95. 95.
    Merzenich M, Wright B, Jenkins W, Xerri C, Byl N, Miller S, et al. Cortical plasticity underlying perceptual, motor, and cognitive skill development: implications for neurorehabilitation. Cold Spring Harb Symp Quant Biol 61: 1–8, 1996.PubMedGoogle Scholar
  96. 96.
    Blake DT, Byl NN, Cheung S, Bedenbaugh P, Nagarajan S, Lamb M, et al. Sensory representation abnormalities that parallel focal hand dystonia in a primate model. Somatosens Mot Res 19: 347–357, 2002.PubMedGoogle Scholar
  97. 97.
    Byl NN, Merzenich MM, Jenkins WM. A primate genesis model of focal dystonia and repetitive strain injury: I. Learning-induced dedifferentiation of the representation of the hand in the primary somatosensory cortex in adult monkeys. Neurology 47: 508–520, 1996.PubMedGoogle Scholar
  98. 98.
    Byl NN. Focal hand dystonia may result from aberrant neuroplasticity. Adv Neurol 94: 19–28, 2004.PubMedGoogle Scholar
  99. 99.
    Byl NN. What can we learn from animal models of focal hand dystonia? Rev Neurol (Paris) 159(10 Pt 1): 857–873, 2003.Google Scholar
  100. 100.
    Byl NN, McKenzie A, Nagarajan SS. Differences in somatosensory hand organization in a healthy flutist and a flutist with focal hand dystonia: a case report. J Hand Ther 13: 302–309, 2000.PubMedGoogle Scholar
  101. 101.
    Blake DT, Byl NN, Merzenich MM. Representation of the hand in the cerebral cortex. Behav Brain Res 135: 179–184, 2002.PubMedGoogle Scholar
  102. 102.
    Sanger TD, Merzenich MM. Computational model of the role of sensory disorganization in focal task-specific dystonia. J Neurophysiol 84: 2458–2464, 2000.PubMedGoogle Scholar
  103. 103.
    Merzenich MM, Jenkins WM. Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience. J Hand Ther 6: 89–104, 1993.PubMedGoogle Scholar
  104. 104.
    Merzenich MM, Sameshima K. Cortical plasticity and memory. Curr Opin Neurobiol 3: 187–196, 1993.PubMedGoogle Scholar
  105. 105.
    Donoghue JP. Plasticity of adult sensorimotor representations. Curr Opin Neurobiol 5: 749–754, 1995.PubMedGoogle Scholar
  106. 106.
    Fox K, Glazewski S, Schulze S. Plasticity and stability of somatosensory maps in thalamus and cortex. Curr Opin Neurobiol 10: 494–497, 2000.PubMedGoogle Scholar
  107. 107.
    Jones EG. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci 23: 1–37, 2000.PubMedGoogle Scholar
  108. 108.
    Krupa DJ, Nicolelis MA. Network level properties of short-term plasticity in the somatosensory system. Prog Brain Res 128: 161–172, 2000.PubMedGoogle Scholar
  109. 109.
    Kaas JH. The reorganization of somatosensory and motor cortex after peripheral nerve or spinal cord injury in primates. Prog Brain Res 128: 173–179, 2000.PubMedGoogle Scholar
  110. 110.
    Chen R, Cohen LG, Hallett M. Nervous system reorganization following injury. Neuroscience 111: 761–773, 2002.PubMedGoogle Scholar
  111. 111.
    Erzurumlu RS. Somatosensory cortical plasticity: recruiting silenced barrels by active whiskers. Exp Neurol 184: 565–569, 2003.PubMedGoogle Scholar
  112. 112.
    Pantev C, Ross B, Fujioka T, Trainor LJ, Schulte M, Schulz M. Music and learning-induced cortical plasticity. Ann NY Acad Sci 999: 438–450, 2003.PubMedGoogle Scholar
  113. 113.
    Wall JT, Xu J, Wang X. Human brain plasticity: an emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res Brain Res Rev 39: 181–215, 2002.PubMedGoogle Scholar
  114. 114.
    Wang X, Merzenich MM, Sameshima K, Jenkins WM. Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature 378: 71–75, 1995.PubMedGoogle Scholar
  115. 115.
    Byl NN, Merzenich MM, Cheung S, Bedenbaugh P, Nagarajan SS, Jenkins WM. A primate model for studying focal dystonia and repetitive strain injury: effects on the primary somatosensory cortex. Phys Ther 77: 269–284, 1997.PubMedGoogle Scholar
  116. 116.
    Topp KS, Byl NN. Movement dysfunction following repetitive hand opening and closing: anatomical analysis in owl monkeys. Mov Disord 14: 295–306, 1999.PubMedGoogle Scholar
  117. 117.
    Rothwell JC, Huang YZ. Systems-level studies of movement disorders in dystonia and Parkinson’s disease. Curr Opin Neurobiol 13: 691–695, 2003.PubMedGoogle Scholar
  118. 118.
    Elston JS, Granje FC, Lees AJ. The relationship between eye-winking tics, frequent eye-blinking and blepharospasm. J Neurol Neurosurg Psychiatry 52: 477–480, 1989.PubMedGoogle Scholar
  119. 119.
    Elston JS, Marsden CD, Grandas F, Quinn NP. The significance of ophthalmological symptoms in idiopathic blepharospasm. Eye 2(Pt 4): 435–439, 1988.PubMedGoogle Scholar
  120. 120.
    Evinger C, Bao JB, Powers AS, Kassem IS, Schicatano EJ, Henriquez VM, et al. Dry eye, blinking, and blepharospasm. Mov Disord 17 [Suppl 2]: S75-S78, 2002.PubMedGoogle Scholar
  121. 121.
    Jankovic J, Orman J. Blepharospasm: demographic and clinical survey of 250 patients. Ann Ophthalmol 16: 371–376, 1984.PubMedGoogle Scholar
  122. 122.
    Langlois M, Richer F, Chouinard S. New perspectives on dystonia. Can J Neurol Sci 30 [Suppl 1]: S34-S44, 2003.PubMedGoogle Scholar
  123. 123.
    Schmidt KE, Linden DE, Goebel R, Zanella FE, Lanfermann H, Zubcov AA. Striatal activation during blepharospasm revealed by fMRI. Neurology 60: 1738–1743, 2003.PubMedGoogle Scholar
  124. 124.
    Kerrison JB, Lancaster JL, Zamarripa FE, Richardson LA, Morrison JC, Hoick DE, et al. Positron emission tomography scanning in essential blepharospasm. Am J Ophthalmol 136: 846–852, 2003.PubMedGoogle Scholar
  125. 125.
    Hutchinson M, Nakamura T, Moeller JR, Antonini A, Belakhlef A, Dhawan V, et al. The metabolic topography of essential blepharospasm: a focal dystonia with general implications. Neurology 55: 673–677, 2000.PubMedGoogle Scholar
  126. 126.
    Esmaeli-Gutstein B, Nahmias C, Thompson M, Kazdan M, Harvey J. Positron emission tomography in patients with benign essential blepharospasm. Ophthal Plast Reconstr Surg 15: 23–27, 1999.PubMedGoogle Scholar
  127. 127.
    Baker RS, Andersen AH, Morecraft RJ, Smith CD. A functional magnetic resonance imaging study in patients with benign essential blepharospasm. J Neuroophthalmol 23: 11–15, 2003.PubMedGoogle Scholar
  128. 128.
    Peshori KR, Schicatano EJ, Gopalaswamy R, Sahay E, Evinger C. Aging of the trigeminal blink system. Exp Brain Res 136: 351–363, 2001.PubMedGoogle Scholar
  129. 129.
    Karson CN. Spontaneous eye-blink rates and dopaminergic systems. Brain 106(Pt 3): 643–653, 1983.PubMedGoogle Scholar
  130. 130.
    Karson CN. Blinking. Bull Soc Belge Ophtalmol 237: 443–457, 1989.PubMedGoogle Scholar
  131. 131.
    Zametkin AJ, Stevens JR, Pittman R. Ontogeny of spontaneous blinking and of habituation of the blink reflex. Ann Neurol 5: 453–457, 1979.PubMedGoogle Scholar
  132. 132.
    Bartko G, Herczeg I, Zador G. Blink rate response to haloperidol as possible predictor of therapeutic outcome. Biol Psychiatry 27: 113–115, 1990.PubMedGoogle Scholar
  133. 133.
    Blin O, Masson G, Azulay JP, Fondarai J, Serratrice G. Apomorphine-induced blinking and yawning in healthy volunteers. Br J Clin Pharmacol 30: 769–773, 1990.PubMedGoogle Scholar
  134. 134.
    Taylor JR, Elsworth JD, Lawrence MS, Sladek JR Jr, Roth RH, Redmond DE Jr. Spontaneous blink rates correlate with dopamine levels in the caudate nucleus of MPTP-treated monkeys. Exp Neurol 158: 214–220, 1999.PubMedGoogle Scholar
  135. 135.
    Elsworth JD, Lawrence MS, Roth RH, Taylor JR, Mailman RB, Nichols DE, et al. Dl and D2 dopamine receptors independently regulate spontaneous blink rate in the vervet monkey. J Pharmacol Exp Ther 259: 595–600, 1991.PubMedGoogle Scholar
  136. 136.
    Napolitano A, Bonuccelli U, Rossi B. Different effects of levodopa and apomorphine on blink reflex recovery cycle in essential blepharospasm. Eur Neurol 38: 119–122, 1997.PubMedGoogle Scholar
  137. 137.
    Evinger C, Basso MA, Manning KA, Sibony PA, Pellegrini JJ, Horn AK. A role for the basal ganglia in nicotinic modulation of the blink reflex. Exp Brain Res 92: 507–515, 1993.PubMedGoogle Scholar
  138. 138.
    Baker RS, Radmanesh SM, Abell KM. The effect of apomorphine on blink kinematics in subhuman primates with and without facial nerve palsy. Invest Ophthalmol Vis Sci 43: 2933–2938, 2002.PubMedGoogle Scholar
  139. 139.
    Kimura J. Disorder of interneurons in Parkinsonism. The orbicularis oculi reflex to paired stimuli. Brain 96: 87–96, 1973.PubMedGoogle Scholar
  140. 140.
    Basso MA, Strecker RE, Evinger C. Midbrain 6-hydroxydopamine lesions modulate blink reflex excitability. Exp Brain Res 94: 88–96, 1993.PubMedGoogle Scholar
  141. 141.
    Schicatano EJ, Peshori KR, Gopalaswamy R, Sahay E, Evinger C. Reflex excitability regulates prepulse inhibition. J Neurosci 20: 4240–4247, 2000.PubMedGoogle Scholar
  142. 142.
    Goto S, Kihara K, Hamasaki T, Nishikawa S, Hirata Y, Ushio Y. Apraxia of lid opening is alleviated by pallidal stimulation in a patient with Parkinson’s disease. Eur J Neurol 7: 337–340, 2000.PubMedGoogle Scholar
  143. 143.
    Esteban A, Gimenez-Roldan S. Involuntary closure of eyelids in parkinsonism. Electrophysiological evidence for prolonged inhibition of the levator palpebrae muscles. J Neurol Sci 85: 333–345, 1988.PubMedGoogle Scholar
  144. 144.
    Ferguson IT, Lenman JA, Johnston BB. Habituation of the orbicularis oculi reflex in dementia and dyskinetic states. J Neurol Neurosurg Psychiatry 41: 824–828, 1978.PubMedGoogle Scholar
  145. 145.
    Rey RD, Garretto NS, Bueri JA, Simonetti DD, Sanz OP, Sica RE. The effect of levodopa on the habituation of the acoustic-palpebral reflex in Parkinson’s disease. Electromyogr Clin Neurophysiol 36: 357–360, 1996.PubMedGoogle Scholar
  146. 146.
    Sunohara N, Tomi H, Satoyoshi E, Tachibana S. Glabella tap sign. Is it due to a lack of R2-habituation? J Neurol Sci 70: 257–267, 1985.PubMedGoogle Scholar
  147. 147.
    Valls-Sole J, Valldeoriola F, Tolosa E, Marti MJ. Distinctive abnormalities of facial reflexes in patients with progressive supranuclear palsy. Brain 120(Pt 10): 1877–1883, 1997.PubMedGoogle Scholar
  148. 148.
    Vidailhet M, Rothwell JC, Thompson PD, Lees AJ, Marsden CD. The auditory startle response in the Steele-Richardson-Olszewski syndrome and Parkinson’s disease. Brain 115(Pt 4): 1181–1192, 1992.PubMedGoogle Scholar
  149. 149.
    Larumbe R, Vaamonde J, Artieda J, Zubieta JL, Obeso JA. Reflex blepharospasm associated with bilateral basal ganglia lesion. Mov Disord 8: 198–200, 1993.PubMedGoogle Scholar
  150. 150.
    Obeso JA, Artieda J, Marsden CD. Stretch reflex blepharospasm. Neurology 35: 1378–1380, 1985.PubMedGoogle Scholar
  151. 151.
    Fisher CM. Reflex blepharospasm. Neurology 13: 77–78, 1963.PubMedGoogle Scholar
  152. 152.
    Burkard WP, Bonetti EP, Da Prada M, Martin JR, Polc P, Schaffner R, et al. Pharmacological profile of moclobemide, a short-acting and reversible inhibitor of monoamine oxidase type A. J Pharmacol Exp Ther 248: 391–399, 1989.PubMedGoogle Scholar
  153. 153.
    Mostofsky DI, Yehuda S, Rabinovitz S, Carasso R. The control of blepharospasm by essential fatty acids. Neuropsychobiology 41: 154–157, 2000.PubMedGoogle Scholar
  154. 154.
    Basso MA, Powers AS, Evinger C. An explanation for reflex blink hyperexcitability in Parkinson’s disease. I. Superior colliculus. J Neurosci 16: 7308–7317, 1996.PubMedGoogle Scholar
  155. 155.
    Basso MA, Evinger C. An explanation for reflex blink hyperexcitability in Parkinson’s disease. II. Nucleus raphe magnus. J Neurosci 16: 7318–7330, 1996.PubMedGoogle Scholar
  156. 156.
    Wichmann T, DeLong MR. Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Ann NY Acad Sci 991: 199–213, 2003.PubMedGoogle Scholar
  157. 157.
    Misbahuddin A, Placzek MR, Warner TT. Focal dystonia is associated with a polymorphism of the dopamine D5 receptor gene. Adv Neurol 94: 143–146, 2004.PubMedGoogle Scholar
  158. 158.
    Misbahuddin A, Placzek MR, Chaudhuri KR, Wood NW, Bhatia KP, Wamer TT. A polymorphism in the dopamine receptor DRD5 is associated with blepharospasm. Neurology 58: 124–126, 2002.PubMedGoogle Scholar
  159. 159.
    Schicatano EJ, Basso MA, Evinger C. Animal model explains the origins of the cranial dystonia benign essential blepharospasm. J Neurophysiol 77: 2842–2846, 1997.PubMedGoogle Scholar
  160. 160.
    Molloy FM, Carr TD, Zeuner KE, Dambrosia JM, Hallett M. Abnormalities of spatial discrimination in focal and generalized dystonia. Brain 126(Pt 10): 2175–2182, 2003.PubMedGoogle Scholar
  161. 161.
    Mao JB, Evinger C. Long-term potentiation of the human blink reflex. J Neurosci 21: RC151, 2001.PubMedGoogle Scholar
  162. 162.
    Pellegrini JJ, Evinger C. Role of cerebellum in adaptive modification of reflex blinks. Learn Mem 4: 77–87, 1997.PubMedGoogle Scholar
  163. 163.
    Morcuende S, Delgado-Garcia JM, Ugolini G. Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat. J Neurosci 22: 8808–8818, 2002.PubMedGoogle Scholar
  164. 164.
    Delgado-Garcia JM, Gruart A. The role of interpositus nucleus in eyelid conditioned responses. Cerebellum 1: 289–308, 2002.PubMedGoogle Scholar
  165. 165.
    Chen F-P EC. Two functions of blink-related interpositus neurons. Soc Neurosci Abstr 29: 391.398, 2003.Google Scholar
  166. 166.
    Davis KD, Dostrovsky JO. Modulatory influences of red nucleus stimulation on the somatosensory responses of cat trigeminal subnucleus oralis neurons. Exp Neurol 91: 80–101, 1986.PubMedGoogle Scholar
  167. 167.
    LeDoux MS, Hurst DC, Lorden JF. Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat. Neuroscience 86: 533–545, 1998.PubMedGoogle Scholar
  168. 168.
    Campbell DB, Hess EJ. Cerebellar circuitry is activated during convulsive episodes in the tottering (tg/tg) mutant mouse. Neuroscience 85: 773–783, 1998.PubMedGoogle Scholar
  169. 169.
    Pizoli CE, Jinnah HA, Billingsley ML, Hess EJ. Abnormal cerebellar signaling induces dystonia in mice. J Neurosci 22: 7825–7833, 2002.PubMedGoogle Scholar
  170. 170.
    Raike RS, Jinnah HA, Hess EJ. Animal models of generalized dystonia. NeuroRx 2:504–512Google Scholar
  171. 171.
    LeDoux MS, Lorden JF. Abnormal cerebellar output in the genetically dystonic rat. Adv Neurol 78: 63–78, 1998.PubMedGoogle Scholar
  172. 172.
    LeDoux MS, Lorden JF, Ervin JM. Cerebellectomy eliminates the motor syndrome of the genetically dystonic rat. Exp Neurol 120: 302–310, 1993.PubMedGoogle Scholar
  173. 173.
    Federico F, Simone IL, Lucivero V, Defazio G, De Salvia R, Mezzapesa DM, et al. Proton magnetic resonance spectroscopy in primary blepharospasm. Neurology 51: 892–895, 1998.PubMedGoogle Scholar
  174. 174.
    Carbon M, Su S, Dhawan V, Raymond D, Bressman S, Eidelberg D. Regional metabolism in primary torsion dystonia: effects of penetrance and genotype. Neurology 62: 1384–1390, 2004.PubMedGoogle Scholar
  175. 175.
    Ledoux MS, Lorden JF, Ervin JM. Inferior olive serotonin and norepinephrine levels during development in the genetically dystonic rat. Brain Res Bull 33: 299–305, 1994.PubMedGoogle Scholar
  176. 176.
    Richter A, Loscher W. Animal models of paroxysmal dystonia. Adv Neurol 89: 443–451, 2002.PubMedGoogle Scholar
  177. 177.
    Siep E, Richter A, Loscher W, Speckmann EJ, Kohling R. Sodium currents in striatal neurons from dystonic dt(sz) hamsters: altered response to lamotrigine. Neurobiol Dis 9: 258–268, 2002.PubMedGoogle Scholar
  178. 178.
    Richter A, Loscher W. Animal models of dystonia. Funct Neurol 15: 259–267, 2000.PubMedGoogle Scholar
  179. 179.
    Gemert M, Hamann M, Bennay M, Loscher W, Richter A. Deficit of striatal parvalbumin-reactive GABAergic interneurons and decreased basal ganglia output in a genetic rodent model of idiopathic paroxysmal dystonia. J Neurosci 20: 7052–7058, 2000.Google Scholar
  180. 180.
    Rehders JH, Loscher W, Richter A. Evidence for striatal dopaminergic overactivity in paroxysmal dystonia indicated by microinjections in a genetic rodent model. Neuroscience 97: 267–277, 2000.PubMedGoogle Scholar
  181. 181.
    Nobrega JN, Parkes JH, Wong P, Raymond R, Richter A. Altered expression of preproenkephalin and prodynorphin mRNA in a genetic model of paroxysmal dystonia. Brain Res 1015: 87–95, 2004PubMedGoogle Scholar
  182. 182.
    Kohling R, Koch UR, Hamann M, Richter A. Increased excitability in cortico-striatal synaptic pathway in a model of paroxysmal dystonia. Neurobiol Dis 16: 236–245, 2004.PubMedGoogle Scholar
  183. 183.
    Gemert M, Richter A, Loscher W. Alterations in spontaneous single unit activity of striatal subdivisions during ontogenesis in mutant dystonic hamsters. Brain Res 821: 277–285, 1999.Google Scholar
  184. 184.
    Richter A, Loscher W. Pathology of idiopathic dystonia: findings from genetic animal models. Prog Neurobiol 54: 633–677, 1998.PubMedGoogle Scholar
  185. 185.
    Nobrega JN, Richter A, Jiwa D, Raymond R, Loscher W. Regional alterations in neuronal activity in dystonic hamster brain determined by quantitative cytochrome oxidase histochemistry. Neuroscience 83: 1215–1223, 1998.PubMedGoogle Scholar
  186. 186.
    Gemert M, Richter A, Loscher W. The electrical activity is impaired in the red nucleus of dt(sz) mutant hamsters with paroxysmal dystonia: an EEG power spectrum analysis of depth electrode recordings. Brain Res 760: 102–108, 1997.Google Scholar
  187. 187.
    Dean P, Porrill J, Stone JV. Visual awareness and the cerebellum: possible role of decorrelation control. Prog Brain Res 144: 61–75, 2004.PubMedGoogle Scholar
  188. 188.
    Dean P, Porrill J, Stone JV. Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex. Proc R Soc Lond B Biol Sci 269: 1895–1904, 2002.Google Scholar
  189. 189.
    Porrill J, Dean P, Stone JV. Recurrent cerebellar architecture solves the motor-error problem. Proc R Soc Lond B Biol Sci 271: 789–796, 2004.Google Scholar
  190. 190.
    Ebadzadeh M, Darlot C. Cerebellar learning of bio-mechanical functions of extra-ocular muscles: modeling by artificial neural networks. Neuroscience 122: 941–966, 2003.PubMedGoogle Scholar
  191. 191.
    Blazquez PM, Hirata Y, Highstein SM. The vestibulo-ocular reflex as a model system for motor learning: what is the role of the cerebellum? Cerebellum 3: 188–192, 2004.PubMedGoogle Scholar
  192. 192.
    Mink JW. The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch Neurol 60: 1365–1368, 2003.PubMedGoogle Scholar
  193. 193.
    Perlmutter JS, Mink JW. Dysfunction of dopaminergic pathways in dystonia. Adv Neurol 94: 163–170, 2004.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2005

Authors and Affiliations

  1. 1.Departments of Neurobiology & Behavior and OphthalmologySUNY Stony BrookStony Brook

Personalised recommendations