NeuroRX

, Volume 2, Issue 3, pp 504–512

Animal models of generalized dystonia

Article

Summary

Dystonia is a prevalent neurological disorder characterized by abnormal co-contractions of antagonistic muscle groups that produce twisting movements and abnormal postures. The disorder may be inherited, arise sporadically, or result from brain insult. Dystonia is a heterogeneous disorder because patients may exhibit focal or generalized symptoms associated with abnormalities in many brain regions including basal ganglia and cerebellum. Elucidating the pathogenic mechanisms underlying dystonia has therefore been challenging. Animal models of dystonia exhibit similar heterogeneity and are useful for understanding pathogenesis. The neurochemical and neurophysiological abnormalities in rodents with idiopathic generalized dystonia suggest that dysfunctional output from basal ganglia, cerebellum, or from multiple systems is the cause of motor dysfunction. Findings from drug- or toxin-induced dystonia in rodents and nonhuman primates mirror the genetic models. The parallels between dystonia in humans and animals suggest that the models will continue to prove useful in determining pathogenesis. Furthermore, detailed characterization of the existing models of dystonia and the development of new models hold promise for the identification of novel therapeutics.

Key Words

Basal ganglia striatum cerebellum inferior olive mice rat 

References

  1. 1.
    Marsden CD, Obeso JA, Zarranz JJ. The anatomical basis of symptomatic dystonia. Brain 108: 463–483, 1985.PubMedCrossRefGoogle Scholar
  2. 2.
    Galardi G, Perani D, Grassi F, Bressi S, Amadio S, Antoni M, et al. Basal ganglia and thalamo-cortical hypermetabolism in patients with spasmodic torticollis. Acta Neurol Scand 94: 172–176, 1996.PubMedCrossRefGoogle Scholar
  3. 3.
    Karbe H, Holthoff VA, Rudolf J, Herholz K, Heiss WD. Positron emission tomography demonstrates frontal cortex and basal ganglia hypometabolism in dystonia. Neurology 42: 1540–1544, 1992.PubMedGoogle Scholar
  4. 4.
    Ceballos-Baumann AO, Passingham RE, Marsden CD, Brooks DJ. Motor reorganization in acquired hemidystonia. Ann Neurol 37: 746–757, 1995.PubMedCrossRefGoogle Scholar
  5. 5.
    Odergren T, Stone-Elander S, Ingvar M. Cerebral and cerebellar activation in correlation to the action-induced dystonia in writer’s cramp. Mov Disord 13: 497–508, 1998.PubMedCrossRefGoogle Scholar
  6. 6.
    Reibisch C, Berg D, Hofmann E, Solymosi L, Naumann M. Cerebral activation patterns in patients with writer’s cramp: a functional magnetic resonance imaging study. J Neurol 248: 10–17, 2001.CrossRefGoogle Scholar
  7. 7.
    Hutchinson M, Nakamura T, Moeller JR, Antonini A, Belakhlef A, Dhawan V, et al. The metabolic topography of essential blepharospasm: a focal dystonia with general implications. Neurology 55: 673–677, 2000.PubMedGoogle Scholar
  8. 8.
    LeDoux MS, Brady KA. Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov Disord 18: 60–69, 2003.PubMedCrossRefGoogle Scholar
  9. 9.
    Yoon CH, Peterson JS, Corrow D. Spontaneous seizures: a new mutation in Syrian golden hamsters. J Hered 67: 115–116, 1976.PubMedGoogle Scholar
  10. 10.
    Loscher W, Fisher JE Jr, Schmidt D, Fredow G, Honack D, Iturrian WB. The sz mutant hamster: a genetic model of epilepsy or of paroxysmal dystonia? Mov Disord 4: 219–232, 1989.PubMedCrossRefGoogle Scholar
  11. 11.
    Bhatia KP. Familial (idiopathic) paroxysmal dyskinesias: an update. Semin Neurol 21: 69–74, 2001.PubMedCrossRefGoogle Scholar
  12. 12.
    Richter A, Loscher W. Alterations in pharmacological sensitivity of GABAergic but not dopaminergic and glutamatergic systems during ontogenesis in dystonic mutant hamsters. Eur J Pharmacol 231: 111–119, 1993.PubMedCrossRefGoogle Scholar
  13. 13.
    Loscher W, Blanke T, Richter A, Hoppen HO. Gonadal sex hormones and dystonia: experimental studies in genetically dystonic hamsters. Mov Disord 10: 92–102, 1995.PubMedCrossRefGoogle Scholar
  14. 14.
    Wahnschaffe U, Fredow G, Heintz P, Loscher W. Neuropathological studies in a mutant hamster model of paroxysmal dystonia. Mov Disord 5: 286–293, 1990.PubMedCrossRefGoogle Scholar
  15. 15.
    Gemert M, Hamann M, Bennay M, Loscher W, Richter A. Deficit of striatal parvalbumin-reactive GABAergic intemeurons and decreased basal ganglia output in a genetic rodent model of idiopathic paroxysmal dystonia. J Neurosci 20: 7052–7058, 2000.Google Scholar
  16. 16.
    Fredow G, Loscher W. Effects of pharmacological manipulation of GABAergic neurotransmission in a new mutant hamster model of paroxysmal dystonia. Eur J Pharmacol 192: 207–219, 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Hamann M, Richter A. Effects of striatal injections of GABA(A) receptor agonists and antagonists in a genetic animal model of paroxysmal dystonia. Eur J Pharmacol 443: 59–70, 2002.PubMedCrossRefGoogle Scholar
  18. 18.
    Demirkiran M, Jankovic J. Paroxysmal dyskinesias: clinical features and classification. Ann Neurol 38: 571–579, 1995.PubMedCrossRefGoogle Scholar
  19. 19.
    Hamann M, Richter A. Striatal increase of extracellular dopamine levels during dystonic episodes in a genetic model of paroxysmal dyskinesia. Neurobiol Dis 16: 78–84, 2004.PubMedCrossRefGoogle Scholar
  20. 20.
    Rehders JH, Loscher W, Richter A. Evidence for striatal dopaminergic overactivity in paroxysmal dystonia indicated by micro-injections in a genetic rodent model. Neuroscience 97: 267–277, 2000.PubMedCrossRefGoogle Scholar
  21. 21.
    Gemert M, Richter A, Rundfeldt C, Loscher W. Quantitative EEG analysis of depth electrode recordings from several brain regions of mutant hamsters with paroxysmal dystonia discloses frequency changes in the basal ganglia. Mov Disord 13: 509–521, 1998.Google Scholar
  22. 22.
    Gemert M, Richter A, Loscher W. Alterations in spontaneous single unit activity of striatal subdivisions during ontogenesis in mutant dystonic hamsters. Brain Res 821: 277–285, 1999.CrossRefGoogle Scholar
  23. 23.
    Kohling R, Koch UR, Hamann M, Richter A. Increased excitability in cortico-striatal synaptic pathway in a model of paroxysmal dystonia. Neurobiol Dis 16: 236–245, 2004.PubMedCrossRefGoogle Scholar
  24. 24.
    Gemert M, Bennay M, Fedrowitz M, Rehders JH, Richter A. Altered discharge pattern of basal ganglia output neurons in an animal model of idiopathic dystonia. J Neurosci 22: 7244–7253, 2002.Google Scholar
  25. 25.
    Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13: 4181–4192, 1993.PubMedGoogle Scholar
  26. 26.
    He F, Zhang S, Qian F, Zhang C. Delayed dystonia with striatal CT lucencies induced by a mycotoxin (3-nitropropionic acid). Neurology 45: 2178–2183, 1995.PubMedGoogle Scholar
  27. 27.
    Ming L. Moldy sugarcane poisoning—a case report with a brief review. J Toxicol Clin Toxicol 33: 363–367, 1995.PubMedCrossRefGoogle Scholar
  28. 28.
    Fu Y, He F, Zhang S, Jiao X. Consistent striatal damage in rats induced by 3-nitropropionic acid and cultures of arthrinium fungus. Neurotoxicol Teratol 17: 413–418, 1995.PubMedCrossRefGoogle Scholar
  29. 29.
    Femagut PO, Diguet E, Stefanova N, Biran M, Wenning GK, Canioni P, et al. Subacute systemic 3-nitropropionic acid intoxication induces a distinct motor disorder in adult C57B1/6 mice: behavioural and histopathological characterisation. Neuroscience 114: 1005–1017, 2002.Google Scholar
  30. 30.
    Ouary S, Bizat N, Altairac S, Menetrat H, Mittoux V, Conde F, et al. Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: implications for neuroprotection studies. Neuroscience 97: 521–530, 2000.PubMedCrossRefGoogle Scholar
  31. 31.
    Palfi S, Leventhal L, Goetz CG, Hantraye T, Roitberg B, Sramek J, et al. Delayed onset of progressive dystonia following subacute 3-nitropropionic acid treatment in Cebus apella monkeys. Mov Disord 15: 524–530, 2000.PubMedCrossRefGoogle Scholar
  32. 32.
    Ghorayeb I, Femagut PO, Stefanova N, Wenning GK, Bioulac B, Tison F. Dystonia is predictive of subsequent altered dopaminergic responsiveness in a chronic l-methyl-4-phenyl-l,2,3,6-tetra-hydropyridine+3-nitropropionic acid model of striatonigral degeneration in monkeys. Neurosci Lett 335: 34–38, 2002.PubMedCrossRefGoogle Scholar
  33. 33.
    Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW, et al. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 92: 7105–7109, 1995.PubMedCrossRefGoogle Scholar
  34. 34.
    Johnson JR, Robinson BL, Ali SF, Binienda Z. Dopamine toxicity following long term exposure to low doses of 3-nitropropionic acid (3-NPA) in rats. Toxicol Lett 116: 113–118, 2000.PubMedCrossRefGoogle Scholar
  35. 35.
    Langsten JW, Ballard P, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980, 1983.CrossRefGoogle Scholar
  36. 36.
    Przedborski S, Jackson-Lewis V. Mechanisms of MPTP toxicity. Mov Disord 13: 35–38, 1998.PubMedGoogle Scholar
  37. 37.
    Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80: 4546–4550, 1983.PubMedCrossRefGoogle Scholar
  38. 38.
    Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med 342: 1484–1491, 2000.PubMedCrossRefGoogle Scholar
  39. 39.
    Pearce RK, Jackson M, Smith L, Jenner P, Marsden CD. Chronic L-DOPA administration induces dyskinesias in the l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-treated common marmoset (Callithrix jacchus). Mov Disord 10: 731–740, 1995.PubMedCrossRefGoogle Scholar
  40. 40.
    Clarke CE, Sambrook MA, Mitchell IJ, Crossman AR. Levodopa-induced dyskinesia and response fluctuations in primates rendered parkinsonian with l-methyl-4-phenyl-l,2,3,6-tetrahydropy-ridine (MPTP). J Neurol Sci 78: 273–280, 1987.PubMedCrossRefGoogle Scholar
  41. 41.
    Boyce S, Clarke CE, Luquin R, Peggs D, Robertson RG, Mitchell IJ, et al. Induction of chorea and dystonia in parkinsonian primates. Mov Disord 5: 3–7, 1990.PubMedCrossRefGoogle Scholar
  42. 42.
    Winkler C, Kirik D, Bjorklund A, Cenci MA. L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10: 165–186, 2002.PubMedCrossRefGoogle Scholar
  43. 43.
    Lundblad M, Picconi B, Lindgren H, Cenci MA. A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 16: 110–123, 2004.PubMedCrossRefGoogle Scholar
  44. 44.
    Pearce RK, Heikkila M, Linden IB, Jenner P. L-dopa induces dyskinesia in normal monkeys: behavioural and pharmacokinetic observations. Psychopharmacology (Berl) 156: 402–409, 2001.CrossRefGoogle Scholar
  45. 45.
    Mitchell IJ, Luquin R, Boyce S, Clarke CE, Robertson RG, Sambrook MA, et al. Neural mechanisms of dystonia: evidence from a 2-deoxyglucose uptake study in a primate model of dopamine agonist-induced dystonia. Mov Disord 5: 49–54, 1990.PubMedCrossRefGoogle Scholar
  46. 46.
    Brooks DJ. PET studies and motor complications in Parkinson’s disease. Trends Neurosci 23: S101-S108, 2000.PubMedCrossRefGoogle Scholar
  47. 47.
    Brooks DJ, Piccini P, Turjanski N, Samuel M. Neuroimaging of dyskinesia. Ann Neurol 47: S158-S159, 2000.Google Scholar
  48. 48.
    Sanghera MK, Grossman RG, Kalhom CG, Hamilton WJ, Ondo WG, Jankovic J. Basal ganglia neuronal discharge in primary and secondary dystonia in patients undergoing pallidotomy. Neurosurgery 52: 1358–1370; discussion 1370–1353, 2003.PubMedCrossRefGoogle Scholar
  49. 49.
    Starr PA, Rau GM, Davis V, Marks WJ, Ostrem JL, Simmons D, et al. Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson’s disease and normal macaque. J Neurophysiol 10.1152/jn.00971.2004, 9 Feb 2005.Google Scholar
  50. 50.
    Zhuang P, Li Y, Hallett M. Neuronal activity in the basal ganglia and thalamus in patients with dystonia. Clin Neurophysiol 115: 2542–2557, 2004.PubMedCrossRefGoogle Scholar
  51. 51.
    Vitek JL, Chockkan V, Zhang JY, Kaneoke Y, Evatt M, DeLong MR, et al. Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol 46: 22–35, 1999.PubMedCrossRefGoogle Scholar
  52. 52.
    Brautigam C, Wevers RA, Jansen RJ, Smeitink JA, de Rijk-van Andel JF, Gabreels FJ, et al. Biochemical hallmarks of tyrosine hydroxylase deficiency. Clin Chem 44: 1897–1904, 1998.PubMedGoogle Scholar
  53. 53.
    Hyland K, Surtees RA, Rodeck C, Clayton PT. Aromatic L-amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a new inborn error of neurotransmitter amine synthesis. Neurology 42: 1980–1988, 1992.PubMedGoogle Scholar
  54. 54.
    Ichinose H, Ohye T, Takahashi E, Seki N, Hori T, Segawa M, et al. Hereditary progressive dystonia with marked diumal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 8: 236–242, 1994.PubMedCrossRefGoogle Scholar
  55. 55.
    Lorden JF, McKeon TW, Baker HJ, Cox N, Walkley SU. Characterization of the rat mutant dystonic (dt): a new animal model of dystonia musculorum deformans. J Neurosci 4: 1925–1932, 1984.PubMedGoogle Scholar
  56. 56.
    Lorden JF, Oltmans GA, Stratton S, Mays LE. Neuropharmacological correlates of the motor syndrome of the genetically dystonic (dt) rat. Adv Neurol 50: 277–297, 1988.PubMedGoogle Scholar
  57. 57.
    McKeon TW, Lorden JF, Oltmans GA, Beales M, Walkley SU. Decreased catalepsy response to haloperidol in the genetically dystonic (dt) rat. Brain Res 308: 89–96, 1984.PubMedCrossRefGoogle Scholar
  58. 58.
    McKeon TW, Lorden JF, Beales M, Oltmans GA. Alterations in the noradrenergic projection to the cerebellum of the dystonic (dt) rat. Brain Res 366: 89–97, 1986.PubMedCrossRefGoogle Scholar
  59. 59.
    Lorden JF, Lutes J, Michela VL, Ervin J. Abnormal cerebellar output in rats with an inherited movement disorder. Exp Neurol 118: 95–104, 1992.PubMedCrossRefGoogle Scholar
  60. 60.
    Lorden JF, Oltmans GA, McKeon TW, Lutes J, Beales M. Decreased cerebellar 3′,5′-cyclic guanosine monophosphate levels and insensitivity to harmaline in the genetically dystonic rat (dt). J Neurosci 5: 2618–2625, 1985.PubMedGoogle Scholar
  61. 61.
    Brown LL, Lorden JF. Regional cerebral glucose utilization reveals widespread abnormalities in the motor system of the rat mutant dystonic. J Neurosci 9: 4033–4041, 1989.PubMedGoogle Scholar
  62. 62.
    Beales M, Lorden JF, Walz E, Oltmans GA. Quantitative autoradiography reveals selective changes in cerebellar GAB A receptors of the rat mutant dystonic. J Neurosci 10: 1874–1885, 1990.PubMedGoogle Scholar
  63. 63.
    LeDoux MS, Lorden JF, Ervin JM. Inferior olive serotonin and norepinephrine levels during development in the genetically dystonic rat. Brain Res Bull 33: 299–305, 1994.PubMedCrossRefGoogle Scholar
  64. 64.
    Oltmans GA, Beales M, Lorden JF, Gordon JH. Alterations in cerebellar glutamic acid decarboxylase (GAD) activity in a genetic model of torsion dystonia (rat). Exp Neurol 85: 216–222, 1984.PubMedCrossRefGoogle Scholar
  65. 65.
    Naudon L, Delfs JM, Clavel N, Lorden JF, Chesselet MF. Differential expression of glutamate decarboxylase messenger RNA in cerebellar Purkinje cells and deep cerebellar nuclei of the genetically dystonic rat. Neuroscience 82: 1087–1094, 1998.PubMedCrossRefGoogle Scholar
  66. 66.
    Lutes J, Lorden JF, Davis BJ, Oltmans GA. GABA levels and GAD immunoreactivity in the deep cerebellar nuclei of rats with altered olivo-cerebellar function. Brain Res Bull 29: 329–336, 1992.PubMedCrossRefGoogle Scholar
  67. 67.
    Oltmans GA, Beales M, Lorden JF. Glutamic acid decarboxylase activity in micropunches of the deep cerebellar nuclei of the genetically dystonic (dt) rat. Brain Res 385: 148–151, 1986.PubMedCrossRefGoogle Scholar
  68. 68.
    Michela VL, Stratton SE, Lorden JF. Enhanced sensitivity to quipazine in the genetically dystonic rat (dt). Pharmacol Biochem Behav 37: 129–133, 1990.PubMedCrossRefGoogle Scholar
  69. 69.
    Stratton SE, Lorden JF. Effect of harmaline on cells of the inferior olive in the absence of tremor: differential response of genetically dystonic and harmaline-tolerant rats. Neuroscience 21: 543–549, 1991.CrossRefGoogle Scholar
  70. 70.
    Stratton SE, Lorden JF, Mays LE, Oltmans GA. Spontaneous and harmaline-stimulated Purkinje cell activity in rats with a genetic movement disorder. J Neurosci 8: 3327–3336, 1988.PubMedGoogle Scholar
  71. 71.
    LeDoux MS, Lorden JF. Abnormal spontaneous and harmaline-stimulated Purkinje cell activity in the awake genetically dystonic rat. Exp Brain Res 145: 457–467, 2002.PubMedCrossRefGoogle Scholar
  72. 72.
    LeDoux MS, Hurst DC, Lorden JF. Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat. Neuroscience 86: 533–545, 1998.PubMedCrossRefGoogle Scholar
  73. 73.
    Llinas R, Muhlethaler M. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol (Lond) 404: 241–258, 1988.Google Scholar
  74. 74.
    LeDoux MS, Lorden JF, Meinzen-Derr J. Selective elimination of cerebellar output in the genetically dystonic rat. Brain Res 697: 91–103, 1995.PubMedCrossRefGoogle Scholar
  75. 75.
    LeDoux MS, Lorden JF, Ervin JM. Cerebellectomy eliminates the motor syndrome of the genetically dystonic rat. Exp Neurol 120: 302–310, 1993.PubMedCrossRefGoogle Scholar
  76. 76.
    Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP, et al. Immunochemical identification and subcellular distribution of the α 1A subunits of brain calcium channels. J Neurosci 15: 6403–6418, 1995.PubMedGoogle Scholar
  77. 77.
    Usowicz MM, Sugimori M, Cherksey B, Llinas R. P-type calcium channels in the somata and dendrites of adult cerebellar Purkinje cells. Neuron 9: 1185–1199, 1992.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α 1A-voltage-dependent calcium channel. Nat Genet 15: 62–69, 1997.PubMedCrossRefGoogle Scholar
  79. 79.
    Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87: 543–552, 1996.PubMedCrossRefGoogle Scholar
  80. 80.
    Lee WY, Jin DK, Oh MR, Lee JE, Song SM, Lee EA, et al. Frequency analysis and clinical characterization of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Korean patients. Arch Neurol 60: 858–863, 2003.PubMedCrossRefGoogle Scholar
  81. 81.
    Ikeuchi T, Takano H, Koide R, Horikawa Y, Honma Y, Onishi Y, et al. Spinocerebellar ataxia type 6: CAG repeat expansion in α1 A voltage-dependent calcium channel gene and clinical variations in Japanese population. Ann Neurol 42: 879–884, 1997.PubMedCrossRefGoogle Scholar
  82. 82.
    Sethi KD, Jankovic J. Dystonia in spinocerebellar ataxia type 6. Mov Disord 17: 150–153, 2001.CrossRefGoogle Scholar
  83. 83.
    Jen J, Kim GW, Baloh RW. Clinical spectrum of episodic ataxia type 2. Neurology 62: 17–22, 2004.PubMedGoogle Scholar
  84. 84.
    Giffin NJ, Benton S, Goadsby PJ. Benign paroxysmal torticollis of infancy: four new cases and linkage to CACNA1A mutation. Dev Med Child Neurol 44: 490–493, 2002.PubMedCrossRefGoogle Scholar
  85. 85.
    Arpa J, Cuesta A, Cruz-Martinez A, Santiago S, Sarria J, Palau F. Clinical features and genetic analysis of a Spanish family with spinocerebellar ataxia 6. Acta Neurol Scand 99: 43–47, 1999.PubMedCrossRefGoogle Scholar
  86. 86.
    Spacey SD, Materek LA, Szczygielski BI, Bird TD. Two novel CACNA1A gene mutations associated with episodic ataxia type 2 and interictal dystonia. Arch Neurol 62: 314–316, 2005.PubMedCrossRefGoogle Scholar
  87. 87.
    Campbell DB, Hess EJ. L-type calcium channels contribute to the tottering mouse dystonic episodes. Mol Pharmacol 55: 23–31, 1999.PubMedGoogle Scholar
  88. 88.
    Wakamori M, Yamazaki K, Matsunodaira H. Single tottering mutations responsible for the neuropathic phenotype of the P-type calcium channel. J Biol Chem 273: 34857–34867, 1998.PubMedCrossRefGoogle Scholar
  89. 89.
    Dove LS, Abbott LC, Griffith WH. Whole-cell and single-channel analysis of p-type calcium currents in cerebellar Purkinje cells of leaner mutant mice. J Neurosci 18: 7687–7699, 1998.PubMedGoogle Scholar
  90. 90.
    Lorenzon NM, Lutz CM, Frankel WN, Beam KG. Altered calcium channel currents in Purkinje cells of the neurological mutant mouse leaner. J Neurosci 18: 4482–4489, 1998.PubMedGoogle Scholar
  91. 91.
    Jun K, Piedras-Renteria ES, Smith SM, Wheeler DB, Beom SB, Lee TG, et al. Ablation of P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the α1a subunit. Proc Natl Acad Sci USA 96: 15245–15250, 1999.PubMedCrossRefGoogle Scholar
  92. 92.
    Fletcher CF, Tottene A, Lennon VA, Wilson SM, Dubel SJ, Paylor R, et al. Dystonia and cerebellar atrophy in Cacnala null mice lacking P/Q calcium channel activity. FASEB J 15: 1288–1290, 2001.PubMedGoogle Scholar
  93. 93.
    Fureman BE, Jinnah HA, Hess EJ. Triggers of paroxysmal dyskinesia in the calcium channel mouse mutant tottering. Pharmacol Biochem Behav 73: 631–637, 2002.PubMedCrossRefGoogle Scholar
  94. 94.
    Green MC, Sidman RL. Tottering—a neuromuscular mutation in the mouse. J Hered 53: 233–237, 1962.PubMedGoogle Scholar
  95. 95.
    Kaplan BJ, Seyfried TN, Glaser GH. Spontaneous polyspike discharges in an epileptic mutant mouse (tottering). Exp Neurol 66: 577–586, 1979.PubMedCrossRefGoogle Scholar
  96. 96.
    Noebels JL, Sidman RL. Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 204: 1334–1336, 1979.PubMedCrossRefGoogle Scholar
  97. 97.
    Yoon CH. Disturbances in the developmental pathways leading to a neurological disorder of genetic origin, “leaner,” in mice. Dev Biol 20: 158–181, 1969.PubMedCrossRefGoogle Scholar
  98. 98.
    Meier H, MacPike AD. Three syndromes produced by two mutant genes in the mouse. Clinical, pathological, and ultrastructural bases of tottering, leaner, and heterozygous mice. J Hered 62: 297–302, 1971.PubMedGoogle Scholar
  99. 99.
    Isaacs KR, Abbott LC. Cerebellar volume decreases in the tottering mouse are specific to the molecular layer. Brain Res Bull 36: 309–314, 1995.PubMedCrossRefGoogle Scholar
  100. 100.
    Rhyu IJ, Abbott LC, Walker DB, Sotelo C. An ultrastructural study of granule cell/Purkinje cell synapses in tottering (tg/tg), leaner (tg(la)/tg(la)) and compound heterozygous tottering/leaner (tg/tg(la)) mice. Neuroscience 90: 7–28, 1999.CrossRefGoogle Scholar
  101. 101.
    Heckroth JA, Abbott LC. Purkinje cell loss from alternating sagittal zones in the cerebellum of leaner mutant mice. Brain Res 658: 93–104, 1994.PubMedCrossRefGoogle Scholar
  102. 102.
    Herrup K, Wilczynski SL. Cerebellar cell degeneration in the leaner mutant mouse. Neuroscience 7: 2185–2196, 1982.PubMedCrossRefGoogle Scholar
  103. 103.
    Abbott LC, Isaacs KR, Heckroth JA. Co-localization of tyrosine hydroxylase and zebrin II immunoreactivities in Purkinje cells of the mutant mice, tottering and tottering/leaner. Neuroscience 71: 461–475, 1996.PubMedCrossRefGoogle Scholar
  104. 104.
    Hess EJ, Wilson MC. Tottering and leaner mutations perturb transient developmental expression of tyrosine hydroxylase in embryologically distinct Purkinje cells. Neuron 1: 123–132, 1991.CrossRefGoogle Scholar
  105. 105.
    Fletcher CF, Lutz CM, O’Sullivan TN, Shaughnessy JD, Hawkes R, Frankel WN, et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87: 607–617, 1996.PubMedCrossRefGoogle Scholar
  106. 106.
    Fureman BE, Campbell DB, Hess EJ. Regulation of tyrosine hydroxylase expression in tottering mouse Purkinje cells. Neurotox Res 5: 521–528, 2003.PubMedCrossRefGoogle Scholar
  107. 107.
    Quian J, Noebels JL. Presynaptic Ca(2+) influx at a mouse central synapse with Ca(2+) channel subunit mutations. J Neurosci 20: 163–170, 2000.Google Scholar
  108. 108.
    Ayata C, Shimizu-Sasamata M, Lo EH, Noebels JL, Moskowitz MA. Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the α1A subunit of P/Q type calcium channels. Neuroscience 95: 639–645, 2000.PubMedCrossRefGoogle Scholar
  109. 109.
    Zhou YD, Turner TJ, Dunlap K. Enhanced G protein-dependent modulation of excitatory synaptic transmission in the cerebellum of the Ca2+ channel-mutant mouse, tottering. J Physiol (Lond) 547: 496–507, 2003.CrossRefGoogle Scholar
  110. 110.
    Matsushita K, Wakamori M, IJ R, Arii T, Oda S, Mori Y, et al. Bidirectional alterations in cerebellar synaptic transmission of tottering and rolling Ca2+ channel mutant mice. J Neurosci 22: 4388–4398, 2002.PubMedGoogle Scholar
  111. 111.
    Dove LS, Nahm SS, Murchison D, Abbott LC, Griffith WH. Altered calcium homeostasis in cerebellar Purkinje cells of leaner mutant mice. J Neurophysiol 84: 513–524, 2000.PubMedGoogle Scholar
  112. 112.
    Campbell DB, Hess EJ. Cerebellar circuitry is activated during convulsive episodes in the tottering (tg/tg) mutant mouse. Neuroscience 85: 773–783, 1998.PubMedCrossRefGoogle Scholar
  113. 113.
    Abbott LC, Bump M, Brandi A, De Laune S. Investigation of the role of the cerebellum in the myoclonic-like movement disorder exhibited by tottering mice. Mov Disord 15: 53–59, 2000.PubMedGoogle Scholar
  114. 114.
    Campbell DB, North JB, Hess EJ. Tottering mouse motor dysfunction is abolished on the Purkinje cell degeneration (PCD) mutant background. Exp Neurol 160: 268–278, 1999.PubMedCrossRefGoogle Scholar
  115. 115.
    Pizoli CE, Jinnah HA, Billingsley ML, Hess EJ. Abnormal cerebellar signaling induces dystonia in mice. J Neurosci 22: 7825–7833, 2002.PubMedGoogle Scholar
  116. 116.
    Eidelberg D, Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Przedborski S, et al. The metabolic topography of idiopathic torsion dystonia. Brain 118: 1473–1484, 1995.PubMedCrossRefGoogle Scholar
  117. 117.
    Eidelberg D, Moeller JR, Antonini A Kazumata K, Nakamura T, Dhawan V, et al. Functional brain networks in DYT1 dystonia. Ann Neurol 44: 303–312, 1998.PubMedCrossRefGoogle Scholar
  118. 118.
    Kluge A, Kettner B, Zschenderlein R, Sandrock D, Munz DL, Hesse S, et al. Changes in perfusion pattern using ECD-SPECT indicate frontal lobe and cerebellar involvement in exercise-induced paroxysmal dystonia. Mov Disord 13: 125–134, 1998.PubMedCrossRefGoogle Scholar
  119. 119.
    Gemert M, Richter A, Loscher W. In vivo extracellular electrophysiology of pallidal neurons in dystonic and nondystonic hamsters. J Neurosci Res 57: 894–905, 1999.CrossRefGoogle Scholar
  120. 120.
    Brown A, Bemier G, Mathieu M, Rossant J, Kothary R. The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nat Genet 10: 301–306, 1995.PubMedCrossRefGoogle Scholar
  121. 121.
    Dalpe G, Leclerc N, Vallee A, Messer A, Mathieu M, De Repentigny Y, et al. Dystonin is essential for maintaining neuronal cytoskeleton organization. Mol Cell Neurosci 10: 243–257, 1998.CrossRefGoogle Scholar
  122. 122.
    Messer A, Strominger NL. An allele of the mouse mutant dystonia musculorum exhibits lesions in red nucleus and striatum. Neuroscience 5: 543–549, 1980.PubMedCrossRefGoogle Scholar
  123. 123.
    Duchen LW, Strich SJ, Falconer DS. Clinical and pathological studies of an hereditary neuropathy in mice (dystonia musculorum). Brain 87: 367–378, 1964.PubMedCrossRefGoogle Scholar
  124. 124.
    Jinnah HA, Egami K, Rao L, Shin M, Kasim S, Hess EJ. Expression of c-fos in the brain after activation of L-type calcium channels. Dev Neurosci 25: 403–411, 2003.PubMedCrossRefGoogle Scholar
  125. 125.
    Jinnah HA, Sepkuty JP, Ho T, Yitta S, Drew T, Rothstein JD, et al. Calcium channel agonists and dystonia in the mouse. Mov Disord 15: 542–551, 2000.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2005

Authors and Affiliations

  • Robert S. Raike
    • 1
  • H. A. Jinnah
    • 1
  • Ellen J. Hess
    • 1
    • 2
  1. 1.Department of NeurologyJohns Hopkins University School of MedicineBaltimore
  2. 2.Department of NeuroscienceJohns Hopkins University School of MedicineBaltimore

Personalised recommendations