, Volume 2, Issue 3, pp 396–409 | Cite as

Rodent models of focal stroke: Size, mechanism, and purpose

  • S. Thomas CarmichaelEmail author


Rodent stroke models provide the experimental backbone for the in vivo determination of the mechanisms of cell death and neural repair, and for the initial testing of neuroprotective compounds. Less than 10 rodent models of focal stroke are routinely used in experimental study. These vary widely in their ability to model the human disease, and in their application to the study of cell death or neural repair. Many rodent focal stroke models produce large infarcts that more closely resemble malignant and fatal human infarction than the average sized human stroke. This review focuses on the mechanisms of ischemic damage in rat and mouse stroke models, the relative size of stroke generated in each model, and the purpose with which focal stroke models are applied to the study of ischemic cell death and to neural repair after stroke.

Key Words

Necrosis apoptosis neural repair malignant infarction rat mouse 


  1. 1.
    American Heart Association, Heart Disease and Stroke Statistics Update 2004. Scholar
  2. 2.
    Carmichael ST. Plasticity of cortical projections after stroke. Neuroscientist 9: 64–75, 2003.PubMedGoogle Scholar
  3. 3.
    Gladstone DJ, Black SE, Hakim AM. Heart and Stroke Foundation of Ontario Centre of Excellence in Stroke Recovery. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33: 2123–2236, 2003.Google Scholar
  4. 4.
    Cheng YD, Al-Khoury L, Zivin JA. Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx 1: 36–45, 2004.PubMedGoogle Scholar
  5. 5.
    Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, et al. Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 1: 17–25, 2004.PubMedGoogle Scholar
  6. 6.
    Stroke Therapy Academic Industry Roundtable. Recommendations for standards regarding preclinical neuroprotective and restorative drugs. Stroke 30: 2752–2758, 1999.Google Scholar
  7. 7.
    Brott T, Marler JR, Olinger CP, Adams HP Jr, Tomsick T, Barsan WG, et al. Measurements of acute cerebral infarction: lesion size by computed tomography. Stroke 20: 871–875, 1989.PubMedGoogle Scholar
  8. 8.
    Lyden PD, Zweifler R, Mahdavi Z, Lonzo L. A rapid, reliable, and valid method for measuring infarct and brain compartment volumes from computed tomographic scans. Stroke 25: 2421–2428, 1994.PubMedGoogle Scholar
  9. 9.
    Nopoulos P, Flaum M, O’Leary D, Andreasen NC. Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Res 98: 1–13, 2000.PubMedGoogle Scholar
  10. 10.
    Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW. Mapping cortical change across the human life span. Nat Neurosci 6: 309–315, 2003.PubMedGoogle Scholar
  11. 11.
    National Institute of Neurological Disorders and Stroke (NINDS) rt-PA Stroke Study Group. Effect of intravenous recombinant tissue plasminogen activator on ischemic stroke lesion size measured by computed tomography. Stroke 31: 2912–2919, 2000.Google Scholar
  12. 12.
    Lindgren A, Norrving B, Rudling O, Johansson BB. Comparison of clinical and neuroradiological findings in first-ever stroke. A population-based study. Stroke 25: 1371–1377, 1994.PubMedGoogle Scholar
  13. 13.
    Kissela B, Broderick J, Woo D, Kothari R, Miller R, Khoury J, et al. Greater Cincinnati/Northern Kentucky Stroke Study: volume of first-ever ischemic stroke among blacks in a population-based study. Stroke 32: 1285–1290, 2001.PubMedGoogle Scholar
  14. 14.
    Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, von Kummer R. “Malignant” middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol 53: 309–315, 1996.PubMedGoogle Scholar
  15. 15.
    Berrouschot J, Sterker M, Bettin S, Koster J, Schneider D. Mortal of space-occupying (“malignant”) middle cerebral artery infarction under conservative intensive care. Intensive Care Med 24: 620–623, 1998.PubMedGoogle Scholar
  16. 16.
    Schwab S, Steiner T, Aschoff A, Schwarz S, Steiner HH, Jansen O, et al. Early hemicraniectomy in patients with complete middle cerebral artery infarction. Stroke 29: 1888–1893, 1998.PubMedGoogle Scholar
  17. 17.
    Molina CA, Montaner J, Abilleira S, Ibarra B, Romero F, Arenillas JF, et al. Timing of spontaneous recanalization and risk of hemorrhagic transformation in acute cardioembolic stroke. Stroke 32: 1079–1084, 2001.PubMedGoogle Scholar
  18. 18.
    Kassem-Moussa H, Graffagnino C. Nonocclusion and spontaneous recanalization rates in acute ischemic stroke: a review of cerebral angiography studies. Arch Neurol 59: 1870–1873, 2002.PubMedGoogle Scholar
  19. 19.
    Bisschops RH, Klijn CJ, Kappelle LJ, van Huffelen AC, van der Grond J. Collateral flow and ischemic brain lesions in patients with unilateral carotid artery occlusion. Neurology 60: 1435–1441, 2003.PubMedGoogle Scholar
  20. 20.
    Kim JJ, Fischbein NJ, Lu Y, Pham D, Dillon WP. Regional angiographic grading system for collateral flow: correlation with cerebral infarction in patients with middle cerebral artery occlusion. Stroke 35: 1340–1844, 2004.PubMedGoogle Scholar
  21. 21.
    Brozici M, van der Zwan A, Hillen B. Anatomy and functionality of leptomeningeal anastomoses: a review. Stroke 34: 2750–2762, 2003.PubMedGoogle Scholar
  22. 22.
    Ringelstein EB, Biniek R, Weiller C, Ammeling B, Nolte PN, Thron A. Type and extent of hemispheric brain infarctions and clinical outcome in early and delayed middle cerebral artery recanalization. Neurology 42: 289–298, 1992.PubMedGoogle Scholar
  23. 23.
    Arnold M, Nedeltchev K, Mattle HP, Loher TJ, Stepper F, Schroth G, et al. Intra-arterial thrombolysis in 24 consecutive patients with internal carotid artery T occlusions. J Neurol Neurosurg Psych 74: 739–742, 2003.Google Scholar
  24. 24.
    Schramm P, Schellinger PD, Fiebach JB, Heiland S, Jansen O, Knauth M, et al. Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke 33: 2426–2432, 2002.PubMedGoogle Scholar
  25. 25.
    Sherman DG, Atkinson RP, Chippendale T, Levin KA, Ng K, Futrell N, et al. Intravenous ancrod for treatment of acute ischemic stroke: the STAT study: a randomized controlled trial. Stroke Treatment with Ancrod Trial. JAMA 283: 2395–2403, 2002.Google Scholar
  26. 26.
    Burton A. Abciximab extends treatment window for stroke. Lancet Neurol 2: 390, 2003.PubMedGoogle Scholar
  27. 27.
    Schellinger PD, Kaste M, Hacke W. An update on thrombolytic therapy for acute stroke. Curr Opin Neurol 17: 69–77, 2004.PubMedGoogle Scholar
  28. 28.
    Corbett D, Nurse S. The problem of assessing effective neuroprotection in experimental cerebral ischemia. Prog Neurobiol 54: 531–548, 1998.PubMedGoogle Scholar
  29. 29.
    Crafton KR, Mark AN, Cramer SC. Improved understanding of cortical injury by incorporating measures of functional anatomy. Brain 126: 1650–1659, 2003.PubMedGoogle Scholar
  30. 30.
    Traversa R, Cicinelli P, Bassi A, Rossini PM, Bemardi G. Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses. Stroke 28: 110–117, 1997.PubMedGoogle Scholar
  31. 31.
    Karbe H, Thiel A, Weber-Luxenburger G, Herholz K, Kessler J, Heiss WD. Brain plasticity in poststroke aphasia: what is the contribution of the right hemisphere? Brain Lang 64: 215–230, 1998.PubMedGoogle Scholar
  32. 32.
    Nelles G, Spiekramann G, Jueptner M, Leonhardt G, Muller S, Gerhard H, et al. Evolution of functional reorganization in hemiplegic stroke: a serial positron emission tomographic activation study. Ann Neurol 46: 901–919, 1999.PubMedGoogle Scholar
  33. 33.
    Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL. Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 31: 656–661, 2000.PubMedGoogle Scholar
  34. 34.
    Calautti C, Leroy F, Guincestre JY, Marie RM, Baron JC. Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery. Neuroreport 12: 3883–3886, 2001.PubMedGoogle Scholar
  35. 35.
    Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke 31: 1210–1216, 2000.PubMedGoogle Scholar
  36. 36.
    Schaechter JD, Kraft E, Hilliard TS, Dijkhuizen RM, Benner T, Finklestein SP, et al. Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehabil Neural Repair 16: 326–338, 2002.PubMedGoogle Scholar
  37. 37.
    Wittenberg GF, Chen R, Ishii K, Bushara KO, Eckloff S, Croarkin E, et al. Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabil Neural Repair 17: 48–57, 2003.PubMedGoogle Scholar
  38. 38.
    Koizumi J, Yoshida Y, Nakazawa T, Ooneda G. Experimental studies of ischemic brain edema. I. A new experimental model of cerebral embolism in which recirculation can introduced into the ischemic area. Jpn J Stroke 8: 108, 1986.Google Scholar
  39. 39.
    Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27: 1616–622, 1996.PubMedGoogle Scholar
  40. 40.
    Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A, Reulen HJ. A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke 29: 2162–2170, 1998.PubMedGoogle Scholar
  41. 41.
    Chen TY, Goyagi T, Toung TJ, Kirsch JR, Hum PD, Koehler RC, et al. Prolonged opportunity for ischemic neuroprotection with selective κ-opioid receptor agonist in rats. Stroke 35: 1180–1185, 2004.PubMedGoogle Scholar
  42. 42.
    Dittmar M, Spruss T, Schuierer G, Horn M. External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats. Stroke 34: 2252–2257, 2003.PubMedGoogle Scholar
  43. 43.
    Garcia JH, Liu KF, Ho KL. Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke 26: 636–642, 1995.PubMedGoogle Scholar
  44. 44.
    Kanemitsu H, Nakagomi T, Tamura A, Tsuchiya T, Kono G, Sano K. Differences in the extent of primary ischemic damage between middle cerebral artery coagulation and intraluminal occlusion models. J Cereb Blood Flow Metab 22: 1196–1204, 2002.PubMedGoogle Scholar
  45. 45.
    Williams AJ, Berti R, Dave JR, Elliot PJ, Adams J, Tortella FC. Delayed treatment of ischemia/reperfusion brain injury: extended therapeutic window with the proteosome inhibitor MLN519. Stroke 35: 1186–1191, 2004.PubMedGoogle Scholar
  46. 46.
    Li F, Omae T, Fisher M. Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of the rat. Stroke 30: 2464–2471, 1999.PubMedGoogle Scholar
  47. 47.
    Yamashita K, Busch E, Wiessner C, Hossmann KA. Thread occlusion but not electrocoagulation of the middle cerebral artery causes hypothalamic damage with subsequent hyperthermia. Neurol Med Chir (Tokyo) 37: 723–727, 1997.Google Scholar
  48. 48.
    Reglodi D, Somogyvari-Vigh A, Maderdrut JL, Vigh S, Arimura A. Postischemic spontaneous hyperthermia and its effects in middle cerebral artery occlusion in the rat. Exp Neurol 163: 399–407, 2000.PubMedGoogle Scholar
  49. 49.
    Gerriets T, Stolz E, Walberer M, Kaps M, Bachmann G, Fisher M. Neuroprotective effects of MK-801 in different rat stroke models for permanent middle cerebral artery occlusion: adverse effects of hypothalamic damage and strategies for its avoidance. Stroke 34: 2234–2239, 2003.PubMedGoogle Scholar
  50. 50.
    Li Y, Chopp M, Jiang N, Zhang ZG, Zaloga C. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke 26: 1252–1257, 1995.PubMedGoogle Scholar
  51. 51.
    Mohamed AA, Gotoh O, Graham DI, Osbome KA, McCulloch J, Mendelow AD, et al. Effect of pretreatment with the calcium antagonist nimodipine on local cerebral blood flow and histopathology after middle cerebral artery occlusion. Ann Neurol 18: 705–711, 1985.PubMedGoogle Scholar
  52. 52.
    Buchan AM, Xue D, Huang ZG, Smith KH, Lesiuk H. Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. Neuroreport 2: 473–476, 1991.PubMedGoogle Scholar
  53. 53.
    Sydserff SG, Borelli AR, Green AR, Cross AJ. Effect of NXY-059 on infarct volume after transient or permanent middle cerebral artery occlusion in the rat; studies on dose, plasma concentration and therapeutic time window. Br J Pharmacol 135: 103–112, 2002.PubMedGoogle Scholar
  54. 54.
    Minematsu K, Fisher M, Li L, Davis MA, Knapp AG, Cotter RE, McBumey RN, et al. Effects of a novel NMDA antagonist on experimental stroke rapidly and quantitatively assessed by diffusion-weighted MRI. Neurology 43: 397–403, 1993.PubMedGoogle Scholar
  55. 55.
    Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96: 13496–13500, 1999.PubMedGoogle Scholar
  56. 56.
    Linnik MD, Miller JA, Sprinkle-Cavallo J, Mason PJ, Thompson FY, Montgomery LR, et al. Apoptotic DNA fragmentation in the rat cerebral cortex induced by permanent middle cerebral artery occlusion. Brain Res Mol Brain Res 32: 116–124, 1995.PubMedGoogle Scholar
  57. 57.
    Li Y, Chopp M, Jiang N, Yao F, Zaloga C. Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 15: 389–397, 1995.PubMedGoogle Scholar
  58. 58.
    Takagi K, Zhao W, Busto R, Ginsberg MD. Local hemodynamic changes during transient middle cerebral artery occlusion and recirculation in the rat: a [14C]iodoantipyrine autoradiographic study. Brain Res 691: 160–168, 1995.PubMedGoogle Scholar
  59. 59.
    Gillardon F, Lenz C, Waschke KF, Krajewski S, Reed JC, Zimmermann M, Kuschinsky W. Altered expression of Bcl-2, Bcl-X, Bax, and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Brain Res Mol Brain Res 40: 254–260, 1996.PubMedGoogle Scholar
  60. 60.
    Schmidt-Kastner R, Truettner J, Zhao W, Belayev L, Krieger C, Busto R, et al. Differential changes of bax, caspase-3 and p21 mRNA expression after transient focal brain ischemia in the rat. Brain Res Mol Brain Res 79: 88–101, 2000.PubMedGoogle Scholar
  61. 61.
    Sharp FR, Lu A, Tang Y, Millhom DE. Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 20: 1011–1132, 2000.PubMedGoogle Scholar
  62. 62.
    Wang XK, Yue T-L, Barone FC, White RF, Young PR, McDonnell PC, et al. Concomitant cortical expression of TNFα and IL-1β mRNA following transient focal ischemia. Mol Chem Neuropathol 23: 103–114, 1994.PubMedGoogle Scholar
  63. 63.
    Zhang Rl, Chopp M, Chen H, Garcia JH. Temporal profile of ischemic damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci 125: 3–10, 1994.PubMedGoogle Scholar
  64. 64.
    Yokota C, Kaji T, Kuge Y, Inoue H, Tamaki N, Minematsu K. Temporal and topographic profiles of cyclooxygenase-2 expression during 24 h of focal brain ishemia in rats. Neurosci Lett 357: 219–222, 2004.PubMedGoogle Scholar
  65. 65.
    Zhu DY, Deng Q, Yao HH, Wang DC, Deng Y, Liu GQ. Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebral ischemia in mice. Life Sci 71: 1985–1996, 2002.PubMedGoogle Scholar
  66. 66.
    Nagayama T, Lan J, Henshall DC, Chen D, O’Horo C, Simon RP, Chen J. Induction of oxidative DNA damage in the peri-infarct region after permanent focal cerebral ischemia. J Neurochem 75: 1716–1728, 2000.PubMedGoogle Scholar
  67. 67.
    Tsuchiya D, Hong S, Kayama T, Panter SS, Weinstein PR. Effect of suture size and carotid clip application upon blood flow and infarct volume after permanent and temporary middle cerebral artery occlusion in mice. Brain Res 970: 131–139, 2003.PubMedGoogle Scholar
  68. 68.
    Barber PA, Hoyte L, Colboume F, Buchan AM. Temperature-regulated model of focal ischemia in the mouse: a study with histopathological and behavioral outcomes. Stroke 5: 1720–1725, 2004.Google Scholar
  69. 69.
    Connolly ES, Winfree CJ, Stem DM, Solomon RA, Pinsky DJ. Procedural and strain-related variables signficantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery 38: 523–532, 1996.PubMedGoogle Scholar
  70. 70.
    Maeda K, Hata R, Hossmann KA. Regional metabolic disturbances and cerebrovascular anatomy after permanent middle cerebral artery occlusion in C57Black/6 and SV129. Neurobiol Dis 6: 101–108, 1999.PubMedGoogle Scholar
  71. 71.
    Yang G, Kitagawa K, Matshushita K, Mabuchi T, Yagita Y, Yanagihara T, Matsumoto M. C57BL/6 stain is most susceptible to cerebral ischemia following bilateral common carotid occlusion among seven mouse strains: selective neuronal death in the murine transient forebrain ischemia. Brain Res 752: 209–218, 1997.PubMedGoogle Scholar
  72. 72.
    Majid A, He YY, Gidday JM, Kaplan SS, Gonzales ER, Park TS, et al. Differences in ischemic vulnerability to permanent cerebral ischemia among 3 common mouse strains. Stroke 31: 2707–2714, 2001.Google Scholar
  73. 73.
    Lambertsen KL, Gregersen R, Finsen B. Microglial-macrophage synthesis of tumor necrosis factor after focal cerebral ischemia in mice is strain dependent. J Cereb Blood Flow Metab 22: 785–797, 2002.PubMedGoogle Scholar
  74. 74.
    Sugimori H, Yao H, Ooboshi H, Ibayashi S, Iida M. Krypton laser-induced photothrombotic distal middle cerebral artery occlusion without craniectomy in mice. Brain Res Brain Res Protoc 13: 189–196, 2004.PubMedGoogle Scholar
  75. 75.
    Beckmann N. High resolution magnetic resonance angiography non-invasively reveals mouse strain differences in the cerebrovascular anatomy in vivo. Magn Reson Med 44: 252–258, 2000.PubMedGoogle Scholar
  76. 76.
    McColl BW, Carswell HV, McCulloch J, Horsburgh K. Extension of cerebral hypoperfusion and ischaemic pathology beyond MCA territory after intraluminal filament occlusion in C57B1/6J mice. Brain Res 997: 15–23, 2004.PubMedGoogle Scholar
  77. 77.
    Furuya K, Kawahara N, Kawai K, Toyoda T, Maeda K, et al. Proximal occlusion of the middle cerebral artery in C57Black6 mice: relationship of patency of the posterior communicating artery, infarct evolution, and animal survival. J Neurosurg 100: 97–105, 2004.PubMedGoogle Scholar
  78. 78.
    Schauwecker PE, Steward O. Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc Natl Acad Sci USA 94: 4103–4108, 1997.PubMedGoogle Scholar
  79. 79.
    Femandes C, Paya-Cano JL, Sluyter F, D’Souza U, Plomin R, Schalkwyk LC. Hippocampal gene expression profiling across eight mouse inbred strains: towards understanding the molecular basis for behaviour. Eur J Neurosci 19: 2576–2582, 2004.Google Scholar
  80. 80.
    Wu C, Zhan R, Qi S, Fujihara H, Taga K, Shimoji K. A forebrain ischemic preconditioning model established in C57Black/Crj6 mice. J Neurosci Methods 107: 101–106, 2001.PubMedGoogle Scholar
  81. 81.
    Belayev L, Busto R, Zhao W, Fernandez G, Ginsberg MD. Middle cerebral artery occlusion in the mouse by intraluminal suture coated with poly-L-lysine: neurological and histological validation. Brain Res 833: 181–190, 1999.PubMedGoogle Scholar
  82. 82.
    Hermann DM, Kilc E, Hata R, Hossman KA, Mies G. Relationship between metabolic dysfunctions, gene responses and delayed cell death after mild focal cerebral ischemia in mice. Neurosience 104: 947–955, 2000.Google Scholar
  83. 83.
    Hata R, Maeda K, Hermann D, Mies G, Hossmann KA. Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20: 306–315, 2000.PubMedGoogle Scholar
  84. 84.
    Hata R, Maeda K, Hermann D, Mies G, Hossmann KA. Evolution of brain infarction after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 20: 937–946, 2000.PubMedGoogle Scholar
  85. 85.
    Vexler ZS, Roberts TP, Bollen AW, Derugin N, Arieff AI. Transient cerebral ischemia. Association of apoptosis induction with hypoperfusion. J Clin Invest 99: 1453–1459, 1997.PubMedGoogle Scholar
  86. 86.
    Toyota S, Graf R, Valentino M, Yoshimine T, Heiss WD. Malignant infarction in cats after prolonged middle cerebral artery occlusion: glutamate elevation related to decrease of cerebral perfusion pressure. Stroke 33: 1383–1391, 2002.PubMedGoogle Scholar
  87. 87.
    Dohman C, Bosche B, Graf R, Staub F, Kracht L, Sobesky J, et al. Prediction of malignant course in MCA infarction by PET and microdialysis. Stroke 34: 2152–2158, 2003.Google Scholar
  88. 88.
    Thomalla G, Kucinski T, Schoder V, Fiehler J, Knab R, Zeummer H, et al. J. Prediction of malignant middle cerebral artery infarction by early perfusion-and diffusion-weighted magnetic resonance imaging. Stroke 34: 1892–1900, 2003.PubMedGoogle Scholar
  89. 89.
    Tamura A, Graham DI, McCulloch J, Teasdale GM. Focal cerebral ischemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Met 1: 53–60, 1981.Google Scholar
  90. 90.
    Herz RC, Kasbergen CM, Hillen B, Versteeg DH, de Wildt DJ. Rat middle cerebral artery occlusion by an intraluminal thread compromises collateral blood flow. Brain Res 791: 223–228, 1998.PubMedGoogle Scholar
  91. 91.
    Guegan C, Sola B. Early and sequential recruitment of apoptotic effectors after focal permanent ischemia in mice. Brain Res 856: 93–100, 2000.PubMedGoogle Scholar
  92. 92.
    Chen ST, Hsu CY, Hogan EL, Marico H, Balentine JD. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke 17: 738–743, 1986.PubMedGoogle Scholar
  93. 93.
    Rubino GJ, Young W. Ischemic cortical lesions after permanent occlusion of the individual middle cerebral artery branches in rats. Stroke 19: 870–877, 1988.PubMedGoogle Scholar
  94. 94.
    Brint S, Jacewicz M, Kiessling M, Tanabe J, Pulsinelli W. Focal brain ischemia in the rat: methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and ipsilateral common carotid arteries. J Cereb Blood Flow Metab 8: 474–483, 1988.PubMedGoogle Scholar
  95. 95.
    Yanamoto H, Nagata I, Niitsu Y, Xue J, Zhang Z, Kikuchi H. Evaluation of MCAO stroke models in normotensive rats: standardized neocortical infarction by the 3VO tecnique. Exp Neurol 182: 261–274, 2003.PubMedGoogle Scholar
  96. 96.
    Buchan AM, Xue D, Slivka A. A new model of temporary focal neocortical ischemia in the rat. Stroke 23: 273–279, 1992.PubMedGoogle Scholar
  97. 97.
    Lin TN, Sun SW, Cheung WM, Li F, Chang C. Dynamic changes in cerebral blood flow and angiogenesis after transient focal cerebral ischemia in rats. Stroke 33: 2985–2991, 2002.PubMedGoogle Scholar
  98. 98.
    Herz RC, Hillen B, Versteeg DH, De Wildt DJ. Collateral hemodynamics after middle cerebral artery occlusion in Wistar and Fischer-344 rats. Brain Res 793: 289–296, 1998.PubMedGoogle Scholar
  99. 99.
    Gerriets T, Li F, Silva MD, Meng X, Brevard M, Sotak CH, Fisher M. The macrosphere model: evaluation of a new stroke model for permanent middle cerebral artery occlusion in rats. J Neurosci Methods 122: 201–211, 2003.PubMedGoogle Scholar
  100. 100.
    Miyake M, Takeo S, Kaijihara H. Sustained decrease in regional blood flow after microsphere injection in rats. Stroke 24: 415–420, 1993.PubMedGoogle Scholar
  101. 101.
    Mayzel-Oreg O, Omae T, Kazemi M, Li F, Fisher M, Cohen Y, et al. Microsphere-induced embolie stroke: an MRI study. Magn Reson Med 51: 1232–1238, 2004.PubMedGoogle Scholar
  102. 102.
    Zhang Z, Zhang RL, Jiang Q, Raman SB, Cantwell L, Chopp M. A new rat model of thrombotic focal cerebral ischemia. J Cereb Blood Flow Metab 17: 123–135, 1997.PubMedGoogle Scholar
  103. 103.
    Beech JS, Williams SC, Campbell CA, Bath PM, Parsons AA, Hunter AJ, et al. Further characterisation of a thromboembolic model of stroke in the rat. Brain Res 895: 18–24, 2001.PubMedGoogle Scholar
  104. 104.
    Wang CX, Todd KG, Yang Y, Gordon T, Shuaib A. Patency of cerebral microvessels after focal embolie stroke in the rat. J Cereb Blood Flow Metab 21: 413–421, 2001.PubMedGoogle Scholar
  105. 105.
    Niessen F, Hilger T, Hoehn M, Hossmann KA. Differences in clot preparation determine outcome of recombinant tissue plasminogen activator treatment in experimental thromboembolic stroke. Stroke 34: 2019–2024, 2003.PubMedGoogle Scholar
  106. 106.
    Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17: 497–504, 1985.PubMedGoogle Scholar
  107. 107.
    Dietrich WD, Ginsberg MD, Busto R, Watson BD. Photochemically induced cortical infarction in the rat. 2. Acute and subacute alterations in local glucose utilization. J Cereb Blood Flow Metab 6: 195–202, 1986.PubMedGoogle Scholar
  108. 108.
    Dietrich WD, Watson BD, Busto R, Ginsberg MD. Metabolic plasticity following cortical infarction: a 2-deoxyglucose study. In: Cerebrovascular disorders (Raichel ME, Powers WJ, eds), pp 285–295. New York: Raven Press, 1987.Google Scholar
  109. 109.
    Que M, Schiene K, Witte OW, Zilles K. Widespread up-regulation of N-methyl-D-aspartate receptors after focal photothrombotic lesion in rat brain. Neurosci Lett 273: 77–80, 1999.PubMedGoogle Scholar
  110. 110.
    Braun JS, Jander S, Schroeter M, Witte OW, Stoll G. Spatiotemporal relationship of apoptotic cell death to lymphomonocytic infiltration in photochemically induced focal ischemia of the rat cerebral cortex. Acta Neuropathol (Bert) 92: 255–263, 1996.Google Scholar
  111. 111.
    Kim GW, Sugawara T, Chan PH. Involvement of oxidative stress and caspase-3 in cortical infarction after photothrombotic ischemia in mice. J Cereb Blood Flow Metab 20: 1690–1701, 2000.PubMedGoogle Scholar
  112. 112.
    Schroeter M, Jander S, Huitinga I, Witte OW, Stoll G. Phagocytic response in photochemically induced infarction of rat cerebral cortex. The role of resident microglia. Stroke 28: 382–386, 1997.PubMedGoogle Scholar
  113. 113.
    Jander S, Schroeter M, Stoll G. Role of NMDA receptor signaling in the regulation of inflammatory gene expression after focal brain ischemia. J Neuroimmunol 109: 181–187, 2000.PubMedGoogle Scholar
  114. 114.
    Hayashi T, Sakurai M, Itoyama Y, Abe K. Oxidative damage and breakage of DNA in rat brain after transient MCA occlusion. Brain Res 832: 159–163, 1999.PubMedGoogle Scholar
  115. 115.
    Katsman D, Zheng J, Spinelli K, Carmichael ST. Tissue micro-environments within functional cortical subdivisions adjacent to focal stroke. J Cereb Blood Flow Metab 23: 997–1009, 2003.PubMedGoogle Scholar
  116. 116.
    van Bruggen N, Cullen BM, King MD, Doran M, Williams SR, Gadian DG, et al. T2- and diffusion-weighted magnetic resonance imaging of a focal ischemic lesion in rat brain. Stroke 23: 576–582, 1992.PubMedGoogle Scholar
  117. 117.
    Lee VM, Burdett NG, Carpenter A, Hall LD, Pambakian PS, Patel S, Wood NI, James MF. Evolution of photochemically induced focal cerebral ischemia in the rat. Magnetic resonance imaging and histology. Stroke 27: 2110–2118, 1996.PubMedGoogle Scholar
  118. 118.
    Provenzale JM, Jahan R, Naidich TP, Fox AJ. Assessment of the patient with hyperacute stroke: imaging and therapy. Radiology 229: 347–359, 2003.PubMedGoogle Scholar
  119. 119.
    Albensi BC, Knoblach SM, Chew BG, O’Reilly MP, Faden AI, Pekar JJ. Diffusion and high resolution MRI of traumatic brain injury in rats: time course and correlation with histology. Exp Neurol 162: 61–72, 2000.PubMedGoogle Scholar
  120. 120.
    Schneider G, Fries P, Wagner-Jochem D, Thome D, Laurer H, Kramann B, et al. Pathophysiological changes after traumatic brain injury: comparison of two experimental animal models by means of MRI. MAGMA 14: 233–241, 2003.Google Scholar
  121. 121.
    Hu X, Wester P, Brannstrom T, Watson BD, Gu W. Progressive and reproducible focal cortical ischemia with or without late spontaneous reperfusion generated by a ring-shaped, laser-driven photothrombotic lesion in rats. Brain Res Brain Res Protoc 7: 76–85, 2001.PubMedGoogle Scholar
  122. 122.
    Witte OW, Stoll G. Delayed and remote effects of focal cortical infarctions: secondary damage and reactive plasticity. Adv Neurol 73: 207–227, 1997.PubMedGoogle Scholar
  123. 123.
    Hagemann G, Redecker C, Neumann-Haefelin T, Freund HJ, Witte OW. Increased long-term potentiation in the surround of experimentally induced focal cortical infarction. Ann Neurol 44: 255–258, 1998.PubMedGoogle Scholar
  124. 124.
    Neumann-Haefelin T, Staiger JF, Redecker C, Zilles K, Fritschy JM, Mohler H, et al. Immunohistochemical evidence for dysregulation of the GABAergic system ipsilateral to photochemically induced cortical infarcts in rats. Neuroscience 87: 871–879, 1998.PubMedGoogle Scholar
  125. 125.
    Carmichael ST, Wei L, Rovainen CM, Woolsey TA. New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis 8: 910–922, 2001.PubMedGoogle Scholar
  126. 126.
    Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8: 963–970, 2002.PubMedGoogle Scholar
  127. 127.
    Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52: 802–813, 2002.PubMedGoogle Scholar
  128. 128.
    Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272: 1791–1794, 1996.PubMedGoogle Scholar
  129. 129.
    Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91, 1989.PubMedGoogle Scholar
  130. 130.
    Cox SB, Woolsey TA, Rovainen CM. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J Cereb Blood Flow Metab 13: 899–913, 1993.PubMedGoogle Scholar
  131. 131.
    Wei L, Rovainen CM, Woolsey TA. Ministrokes in rat barrel cortex. Stroke 26: 1459–1462, 1995.PubMedGoogle Scholar
  132. 132.
    Li S, Zheng J, Carmichael ST. Increased oxidative protein and DNA damage but decreased stress response in the aged brain following experimental stroke. Neurobiol Dis 18: 432–440, 2005.PubMedGoogle Scholar
  133. 133.
    Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li S. Growth-associated gene expression after stroke: evidence for a regenerative zone in peri-infarct cortex. Exp Neurol, in press.Google Scholar
  134. 134.
    Masaki T, Yanagisawa M. Endothelins. Essays Biochem 27: 79–89, 1992.PubMedGoogle Scholar
  135. 135.
    Hughes PM, Anthony DC, Ruddin M, Botham MS, Rankine EL, Sablone M, et al. Focal lesions in the rat central nervous system induced by endothelin-1. J Neuropathol Exp Neurol 62: 1276–1286, 2003.PubMedGoogle Scholar
  136. 136.
    Fuxe K, Bjelke B, Andbjer B, Grahn H, Rimondini R, Agnati LF. Endothelin-1 induced lesions of the frontoparietal cortex of the rat. A possible model of focal cortical ischemia. Neuroreport 8: 2623–2629, 1997.PubMedGoogle Scholar
  137. 137.
    Adkins-Muir DL, Jones TA. Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats. Neurol Res 25: 780–788, 2003.PubMedGoogle Scholar
  138. 138.
    Luke LM, Allied RP, Jones TA. Unilateral ischemic sensorimotor cortical damage induces contralesional synaptogenesis and enhances skilled reaching with the ipsilateral forelimb in adult male rats. Synapse, in press.Google Scholar
  139. 139.
    Gilmour G, Iversen SD, O’Neill MF, Bannerman DM. The effects of intracortical endothelin-1 injections on skilled forelimb use: implications for modelling recovery of function after stroke. Behav Brain Res 150: 171–183, 2004.PubMedGoogle Scholar
  140. 140.
    Nakagomi S, Kiryu-Seo S, Kiyama H. Endothelin-converting enzymes and endothelin receptor B messenger RNAs are expressed in different neural cell species and these messenger RNAs are coordinately induced in neurons and astrocytes respectively following nerve injury. Neuroscience 101: 441–449, 2000.PubMedGoogle Scholar
  141. 141.
    Naidoo V, Naidoo S, Mahabeer R, Raidoo DM. Cellular distribution of the endothelin system in the human brain. J Chem Neuroanat 27: 87–98, 2004.PubMedGoogle Scholar
  142. 142.
    Uesugi M, Kasuya Y, Hama H, Yamamoto M, Hayashi K, Masaki T, Goto K. Endogenous endothelin-1 initiates astrocytic growth after spinal cord injury. Brain Res 728: 255–259, 1996.PubMedGoogle Scholar
  143. 143.
    Uesugi M, Kasuya Y, Hayashi K, Goto K. SB209670, a potent endothelin receptor antagonist, prevents or delays axonal degeneration after spinal cord injury. Brain Res 786: 235–259, 1998.PubMedGoogle Scholar
  144. 144.
    Tagaya M, Liu KF, Copeland B, Seiffert D, Engler R, Garcia JH, et al. DNA scission after focal brain ischemia. Temporal differences in two species. Stroke 28: 1245–1254, 1997.PubMedGoogle Scholar
  145. 145.
    Fukuda S, del Zoppo GJ. Models of focal cerebral ischemia in the nonhuman primate. ILAR J 44: 96–104, 2004.Google Scholar
  146. 146.
    Belayev L, Khoutorova L, Xhang Y, Belayev A, Zhao W, Busto R, et al. Caffeinol confers cortical but not subcortical neuroprotection after transient focal cerebral ischemia in rats. Brain Res 1008: 278–283, 2004.PubMedGoogle Scholar
  147. 147.
    Inoue S, Drummond JC, Davis DP, Cole DJ, Patel PM. Combination of isoflurane and caspase inhibition reduces cerebral injury in rats subjected to focal cerebral ischemia. Anesthesiology 101: 75–81, 2004.PubMedGoogle Scholar
  148. 148.
    Matucz E, Moricz K, Gigler G, Simo A, Barkoczy J, Levay G, et al. Reduction of cerebral infarct size by non-competitive AMPA antagonists in rats subjected to permanent and transient focal ischemia. Brain Res 1019: 210–216, 2004.PubMedGoogle Scholar
  149. 149.
    Cervera A, Justicia C, Reverter JC, Planas AM, Chamorro A. Steady plasma concentration of unfractionated heparin reduces infarct volume and prevents inflammatory damage after transient focal cerebral ischemia in the rat. J Neurosci Res 77: 565–572, 2004.PubMedGoogle Scholar
  150. 150.
    Virley D, Beech JS, Smart SC, Williams SC, Hodges H, Hunter AJ. A temporal MRI assessment of neuropathology after transient middle cerebral artery occlusion in the rat: correlations with behavior. J Cereb Blood Flow Metab 20: 563–582, 2000.PubMedGoogle Scholar
  151. 151.
    Andrabi SA, Spina MG, Lorenz P, Ebmeyer U, Wolf G, Horn TF. Oxyresveratrol (trans-2,3′,4,5′-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia. Brain Res 1017: 98–107, 2004.PubMedGoogle Scholar
  152. 152.
    Petty MA, Neumann-Haefelin C, Kalisch J, Sarhan S, Wettstein JG, Juretschke HP. In vivo neuroprotective effects of ACEA 1021 confirmed by magnetic resonance imaging in ischemic stroke. Eur J Pharmacol 474: 53–62, 2003.PubMedGoogle Scholar
  153. 153.
    Williams AJ, Hale SL, Moffett JR, Dave JR, Elliott PJ, Adams J, et al. Delayed treatment with MLN519 reduces infarction and associated neurologic deficit caused by focal ischemic brain injury in rats via antiinflammatory mechanisms involving nuclear factor-κB activation, gliosis, and leukocyte infiltration. J Cereb Blood Flow Metab 23: 75–87, 2003.PubMedGoogle Scholar
  154. 154.
    Andersen M, Overgaard K, Meden P, Boysen G, Choi SC. Effects of citicoline combined with thrombolytic therapy in a rat embolie stroke model. Stroke 30: 1464–1471, 1999.PubMedGoogle Scholar
  155. 155.
    Takamatsu H, Tatsumi M, Nitta S, Ichise R, Muramatsu K, Iida M, et al. Time courses of progress to the chronic stage of middle cerebral artery occlusion models in rats. Exp Brain Res 146: 95–102, 2002.PubMedGoogle Scholar
  156. 156.
    Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ. Role of IL-1α and IL-1β in ischemic brain damage. J Neurocsi 21: 5528–5534, 2001.Google Scholar
  157. 157.
    Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9: 1180–1186, 2003.PubMedGoogle Scholar
  158. 158.
    Yu F, Sugawara T, Chan PH. Treatment with dihydroethidium reduces infarct size after transient focal cerebral ischemia in mice. Brain Res 978: 223–227, 2003.PubMedGoogle Scholar
  159. 159.
    Gibson CL, Murphy SP. Progesterone enhances functional recovery after middle cerebral artery occlusion in male mice. J Cereb Blood Flow Metab 24: 805–813, 2004.PubMedGoogle Scholar
  160. 160.
    Luo Y, Qin Z, Hong Z, Zhang X, Ding D, Fu JH, et al. Astragaloside IV protects against ischemic brain injury in a murine model of transient focal ischemia. Neurosci Lett 363: 218–223, 2004.PubMedGoogle Scholar
  161. 161.
    Wexler EJ, Peters EE, Gonzales A, Gonzales ML, Slee AM, Kerr JS. An objective procedure for ischemic area evaluation of the stroke intraluminal thread model in the mouse and rat. J Neurosci Methods 113: 51–58, 2002.PubMedGoogle Scholar
  162. 162.
    Shichinohe H, Kuroda S, Abumiya T, Ikeda J, Kobayashi T, Yoshimoto T, et al. FK506 reduces infarct volume due to permanent focal cerebral ischemia by maintaining BAD turnover and inhibiting cytochrome c release. Brain Res 1001: 51–519, 2004.PubMedGoogle Scholar
  163. 163.
    Yanamoto H, Nagata I, Hashimoto N, Kikuchi H. Three-vessel occlusion using a micro-clip for the proximal left middle cerebral artery produces a reliable neocortical infarct in rats. Brain Res Brain Res Protoc 3: 209–220, 1998.PubMedGoogle Scholar
  164. 164.
    McDaniel B, Sheng H, Warner DS, Hedlund LW, Benveniste H. Tracking brain volume changes in C57BL/6J and ApoE-deficient mice in a model of neurodegeneration: a 5-week longitudinal micro-MRI study. Neuroimage 14: 1244–1255, 2001.PubMedGoogle Scholar
  165. 165.
    Saver JL, Johnston KC, Homer D, Wityk R, Koroshetz W, Truskowski LL, Haley EC. Infarct volume as a surrogate or auxiliary outcome measure in ischemic stroke clinical trials. The RANT-TAS Investigators. Stroke 30: 293–298, 1999.PubMedGoogle Scholar
  166. 166.
    Mori K, Aoki A, Yamamoto T, Horinaka N, Maeda M. Aggressive decompressive surgery in patients with massive hemispheric embolie cerebral infarction associated with severe brain swelling. Acta Neurochir (Wien) 143: 483–491, 2001.Google Scholar
  167. 167.
    Oppenheim C, Samson Y, Manai R, Lalam T, Vandamme X, Crozier S, et al. Prediction of malignant middle cerebral artery infarction by diffusion-weighted imaging. Stroke 31: 2175–2181, 2000.PubMedGoogle Scholar
  168. 168.
    Foerch C, Otto B, Singer OC, Neumann-Haefelin T, Yan B, Berkefeld J, et al. Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke 35: 2160–2164, 2004.PubMedGoogle Scholar
  169. 169.
    Kim JH, Yenari MA, Giffard RG, Cho SW, Park KA, Lee JE. Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury. Exp Neurol 189: 122–130, 2004.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2005

Authors and Affiliations

  1. 1.Department of NeurologyDavid Geffen School of Medicine at UCLALos Angeles

Personalised recommendations