, Volume 2, Issue 2, pp 361–371 | Cite as

Neuroimaging and therapeutics in movement disorders



In this review, we discuss the role of neuroimaging in assessing treatment options for movement disorders, particularly Parkinson’s disease (PD). Imaging methods to assess dopaminergic function have recently been applied in trials of potential neuroprotective agents. Other imaging methods using regional metabolism and/or cerebral perfusion have been recently introduced to quantify the modulation of network activity as an objective marker of the treatment response. Both imaging strategies have provided novel insights into the mechanisms underlying a variety of pharmacological and stereotaxic surgical treatment strategies for PD and other movement disorders.

Key Words

Movement disorders Parkinson’s disease Huntington’s disease Tourette’s syndrome dystonia positron emission tomography (PET) magnetic resonance imaging (MRI) 


  1. 1.
    Brooks DJ. Position emission tomography and single-photon emission computed tomography in central nervous system drug development.NeuroRx 2: 226–236, 2005.PubMedGoogle Scholar
  2. 2.
    Ravina B, Eidelberg D, Ahlskog JE, Albin R, Brooks DJ, Carbon M, et al. The role of radiotracer imaging in Parkinson’s disease.Neurology 64: 208–215, 2005.PubMedGoogle Scholar
  3. 3.
    Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, et al. The metabolic topography of parkinsonism.J Cereb Blood Flow Metab 14: 783–801, 1994.PubMedGoogle Scholar
  4. 4.
    Feigin A, Antonini A, Fukuda M, De Notaris R, Benti R, Pezzoli G, et al. Tc-99m ethylene cysteinate dimer SPECT in the differential diagnosis of parkinsonism.Mov Disord 17: 1265–1270, 2002.PubMedGoogle Scholar
  5. 5.
    Eckert T, Eidelberg D. The role of functional neuroimaging in the differential diagnosis of idiopathic Parkinson’s disease and multiple system atrophy.Clin Auton Res 14: 84–91, 2004.PubMedGoogle Scholar
  6. 6.
    Brooks DJ. Imaging end points for monitoring neuroprotection in Parkinson’s disease.Ann Neurol 53: S110-S118, 2003.PubMedGoogle Scholar
  7. 7.
    Marek K, Jennings D, Seibyl J. Dopamine agonists and Parkinson’s disease progression: what can we learn from neuroimaging studies.Ann Neurol 53: S160–166, 2003.PubMedGoogle Scholar
  8. 8.
    Parkinson-Study-Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression.JAMA 287: 1653–1661, 2002.Google Scholar
  9. 9.
    Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, Olanow CW, Tanner C, Marek K; Parkinson Study Group. Levodopa and the progression of Parkinson’s disease.N Engl J Med 351: 2498–2508, 2004.PubMedGoogle Scholar
  10. 10.
    Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study.Ann Neurol 54: 93–101, 2003.PubMedGoogle Scholar
  11. 11.
    Eidelberg D, Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Silbersweig D, et al. Regional metabolic correlates of surgical outcome following unilateral pallidotomy for Parkinson’s disease.Ann Neurol 39: 450–459, 1996.PubMedGoogle Scholar
  12. 12.
    Fukuda M, Mentis MJ, Ma Y, Dhawan V, Antonini A, Lang AE, et al. Networks mediating the clinical effects of pallidal brain stimulation for Parkinson’s disease: a PET study of resting-state glucose metabolism.Brain 124: 1601–1609, 2001.PubMedGoogle Scholar
  13. 13.
    Su PC, Ma Y, Fukuda M, Mentis MJ, Tseng HM, Yen RF, et al. Metabolic changes following subthalamotomy for advanced Parkinson’s disease.Ann Neurol 50: 514–520, 2001.PubMedGoogle Scholar
  14. 14.
    Trošt M, Su PC, Barnes A, Su SL, Yen RF, Tseng HM, et al. Evolving metabolic changes during the first postoperative year after subthalamotomy.J Neurosurg 99: 872–878, 2003.PubMedGoogle Scholar
  15. 15.
    Devous MD Sr. Single-photon emission computed tomography in neurotherapeutics.NeuroRx 2: 237–249, 2005.PubMedGoogle Scholar
  16. 16.
    Morrish PK, Rakshi JS, Bailey DL, Sawle GV, Brooks DJ. Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET.J Neurol Neurosurg Psychiatry 64: 314–319, 1998.PubMedGoogle Scholar
  17. 17.
    Pate BD, Kawamata T, Yamada T, McGeer EG, Hewitt KA, Snow BJ, et al. Correlation of striatal fluorodopa uptake in the MPTP monkey with dopaminergic indices.Ann Neurol 34: 331–338, 1993.PubMedGoogle Scholar
  18. 18.
    Snow B, Tooyama I, McGeer E, Yamada T, Calne D, Takahashi H, et al. Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels.Ann Neurol 34: 324–330, 1993.PubMedGoogle Scholar
  19. 19.
    Tissingh G, Bergmans P, Booij J, Winogrodzka A, Stoof JC, Wolters EC, et al. [123I]β-CIT single-photon emission tomography in Parkinson’s disease reveals a smaller decline in dopamine transporters with age than in controls.Eur J Nucl Med 24: 1171–1174, 1997.PubMedGoogle Scholar
  20. 20.
    Kazumata K, Dhawan V, Chaly T, Antonini A, Margouleff C, Belakhlef A, et al. Dopamine transporter imaging with fluorine-18-FPCIT and PET.J Nucl Med 39: 1521–1530, 1998.PubMedGoogle Scholar
  21. 21.
    Dhawan V, Eidelberg D. SPECT imaging in Parkinson’s disease.Adv Neurol 86: 205–213, 2001.PubMedGoogle Scholar
  22. 22.
    Fahn S, Elton R, UPDRS Development Committee. Unified Parkinson’s Disease Rating Scale. In: Fahn S, Marsden CD, Calne D, eds.Recent developments in Parkinson’s disease. New York: MacMillan, pp 153–163, 1987.Google Scholar
  23. 23.
    Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease.Ann Neurol 47: 493–503, 2000.PubMedGoogle Scholar
  24. 24.
    Innis RB, Marek KL, Sheff K, Zoghbi S, Castronuovo J, Feigin A, et al. Effect of treatment with L-dopa/carbidopa or L-selegiline on striatal dopamine transporter SPECT imaging with [123I]beta-CIT.Mov Disord 14: 436–442, 1999.PubMedGoogle Scholar
  25. 25.
    Nurmi E, Bergman J, Eskola O, Solin O, Hinkka SM, Sonninen P, et al. Reproducibility and effect of levodopa on dopamine transporter function measurements: a [18F]CFT PET study.J Cereb Blood Flow Metab 20: 1604–1609, 2000.PubMedGoogle Scholar
  26. 26.
    Ahlskog JE, Uitti RJ, O’Connor MK, Maraganore DM, Matsumoto JY, Stark KF, et al. The effect of dopamine agonist therapy on dopamine transporter imaging in Parkinson’s disease.Mov Disord 14: 940–946, 1999.PubMedGoogle Scholar
  27. 27.
    Guttman M, Stewart D, Hussey D, Wilson A, Houle S, Kish S. Influence of L-dopa and pramipexole on striatal dopamine transporter in early PD.Neurology 56: 1559–1564, 2001.PubMedGoogle Scholar
  28. 28.
    Nakamura T, Dhawan V, Chaly T, Fukuda M, Ma Y, Breeze R, et al. Blinded positron emission tomography study of dopamine cell implantation for Parkinson’s disease.Ann Neurol 50: 181–187, 2001.PubMedGoogle Scholar
  29. 29.
    Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease.Ann Neurol 54: 403–414, 2003.PubMedGoogle Scholar
  30. 30.
    Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study.Ann Neurol 52: 628–634, 2002.PubMedGoogle Scholar
  31. 31.
    Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient.Nat Neurosci 2: 1137–1140, 1999.PubMedGoogle Scholar
  32. 32.
    Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease.N Engl J Med 344: 710–719, 2001.PubMedGoogle Scholar
  33. 33.
    Lindvall O. Stem cells for cell therapy in Parkinson’s disease.Pharmacol Res 47: 279–287, 2003.PubMedGoogle Scholar
  34. 34.
    Eidelberg D, Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Chaly T, et al. Early differential diagnosis of Parkinson’s disease with 18F-fluorodeoxyglucose and positron emission tomography.Neurology 45: 1995–2004, 1995.PubMedGoogle Scholar
  35. 35.
    Alexander GE, Moeller JR. Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: a principal component approach to modeling brain function in disease.Hum Brain Mapp 2: 1–16, 1994.Google Scholar
  36. 36.
    Moeller JR, Nakamura T, Mentis MJ, Dhawan V, Spetsieres P, Antonini A, et al. Reproducibility of regional metabolic covariance patterns: comparison of four populations.J Nucl Med 40: 1264–1269, 1999.PubMedGoogle Scholar
  37. 37.
    Feigin A, Leenders KL, Moeller JR, Missimer J, Kuenig G, Spetsieris P, et al. Metabolic network abnormalities in early Huntington’s disease: an [(18)F]FDG PET study.J Nucl Med 42: 1591–1595, 2001.PubMedGoogle Scholar
  38. 38.
    Eidelberg D, Moeller JR, Antonini A, Kazumata K, Nakamura T, Dhawan V, et al. Functional brain networks in DYT1 dystonia.Ann Neurol 44: 303–312, 1998.PubMedGoogle Scholar
  39. 39.
    Trošt M, Carbon M, Edwards C, Ma Y, Raymond D, Mentis MJ, et al. Primary dystonia: is abnormal functional brain architecture linked to genotype?Ann Neurol 52: 853–856, 2002.PubMedGoogle Scholar
  40. 40.
    Eidelberg D, Moeller JR, Antonini A, Kazumata K, Dhawan V, Budman C, et al. The metabolic anatomy of Tourette’s syndrome.Neurology 48: 927–934, 1997.PubMedGoogle Scholar
  41. 41.
    Eidelberg D, Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Chaly T, et al. Assessment of disease severity in parkinsonism with fluorine-18-fluorodeoxyglucose and PET.J Nucl Med 36: 378–383, 1995.PubMedGoogle Scholar
  42. 42.
    Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Mandel F, Alexander GE, et al. The metabolic topography of normal aging.J Cereb Blood Flow Metab 16: 385–398, 1996.PubMedGoogle Scholar
  43. 43.
    Lozza C, Baron JC, Eidelberg D, Mentis MJ, Carbon M, Marie RM. Executive processes in Parkinson’s disease: FDG-PET and network analysis.Hum Brain Mapp 22: 236–245, 2004.PubMedGoogle Scholar
  44. 44.
    Moeller JR, Eidelberg D. Divergent expression of regional metabolic topographies in Parkinson’s disease and normal ageing.Brain 120: 2197–2206, 1997.PubMedGoogle Scholar
  45. 45.
    Eidelberg D, Moeller JR, Dhawan V, Sidtis JJ, Ginos JZ, Strother SC, et al. The metabolic anatomy of Parkinson’s disease: complementary [18F]fluorodeoxyglucose and [18F]fluorodopa positron emission tomographic studies.Mov Disord 5: 203–213, 1990.PubMedGoogle Scholar
  46. 46.
    Eidelberg D, Moeller JR, Kazumata K, Antonini A, Sterio D, Dhawan V, et al. Metabolic correlates of pallidal neuronal activity in Parkinson’s disease.Brain 120: 1315–1324, 1997.PubMedGoogle Scholar
  47. 47.
    Alsop DC, Casement M, Press D. Increased hippocampal perfusion in early Alzheimer’s disease.Proc Intl Soc Mag Reson Med 11: A178, 2003.Google Scholar
  48. 48.
    Mentis MJ, McIntosh AR, Perrine K, Dhawan V, Berlin B, Feigin A, et al. Relationships among the metabolic patterns that correlate with mnemonic, visuospatial, and mood symptoms in Parkinson’s disease.Am J Psychiatry 159: 746–754, 2002.PubMedGoogle Scholar
  49. 49.
    Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM. The subthalamic nucleus in the context of movement disorders.Brain 127: 4–20, 2004.PubMedGoogle Scholar
  50. 50.
    Volkmann J. Deep brain stimulation for the treatment of Parkinson’s disease.J Clin Neurophysiol 21: 6–17, 2004.PubMedGoogle Scholar
  51. 51.
    Antonini A, Moeller JR, Nakamura T, Spetsieris P, Dhawan V, Eidelberg D. The metabolic anatomy of tremor in Parkinson’s disease.Neurology 51: 803–810, 1998.PubMedGoogle Scholar
  52. 52.
    Fukuda M, Barnes A, Simon ES, Holmes A, Dhawan V, Giladi N, et al. Thalamic stimulation for parkinsonian tremor: correlation between regional cerebral blood flow and physiological tremor characteristics.Neuroimage 21: 608–615, 2004.PubMedGoogle Scholar
  53. 53.
    Trošt M, Simon ES, Dhawan V, Okulski J, Fodstad H, Eidelberg D. Clinical and metabolic brain changes in tremor predominant Parkinson’s disease patients treated with Vim deep brain stimulation.Mov Disord 199: S383, 2004.Google Scholar
  54. 54.
    Feigin A, Fukuda M, Dhawan V, Przedborski S, Jackson-Lewis V, Mentis MJ, et al. Metabolic correlates of levodopa response in Parkinson’s disease.Neurology 57: 2083–2088, 2001.PubMedGoogle Scholar
  55. 55.
    Brown RG, Dowsey PL, Brown P, Jahanshahi M, Pollak P, Benabid AL, et al. Impact of deep brain stimulation on upper limb akinesia in Parkinson’s disease.Ann Neurol 45: 473–488, 1999.PubMedGoogle Scholar
  56. 56.
    Berding G, Odin P, Brooks DJ, Nikkhah G, Matthies C, Peschel T, et al. Resting regional cerebral glucose metabolism in advanced Parkinson’s disease studied in the off and on conditions with [(18)F]FDG-PET.Mov Disord 16: 1014–1022, 2001.PubMedGoogle Scholar
  57. 57.
    Hilker R, Voges J, Weisenbach S, Kalbe E, Burghaus L, Ghaemi M, et al. Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease.J Cereb Blood Flow Metab 24: 7–16, 2004.PubMedGoogle Scholar
  58. 58.
    Litvan I, Agid Y, Goetz C, Jankovic J, Wenning GK, Brandel JP, et al. Accuracy of the clinical diagnosis of corticobasal degeneration: a clinicopathologic study.Neurology 48: 119–125, 1997.PubMedGoogle Scholar
  59. 59.
    Litvan I, Goetz CG, Jankovic J, Wenning GK, Booth V, Bartko JJ, et al. What is the accuracy of the clinical diagnosis of multiple system atrophy? A clinicopathologic study.Arch Neurol 54: 937–944, 1997.PubMedGoogle Scholar
  60. 60.
    Litvan I, Booth V, Wenning GK, Bartko JJ, Goetz CG, McKee A, et al. Retrospective application of a set of clinical diagnostic criteria for the diagnosis of multiple system atrophy.J Neural Transm 105: 217–227, 1998.PubMedGoogle Scholar
  61. 61.
    Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service.Brain 125: 861–870, 2002.PubMedGoogle Scholar
  62. 62.
    Osaki Y, Wenning GK, Daniel SE, Hughes A, Lees AJ, Mathias CJ, et al. Do published criteria improve clinical diagnostic accuracy in multiple system atrophy?Neurology 59: 1486–1491, 2002.PubMedGoogle Scholar
  63. 63.
    Hughes AJ, Daniel SE, Blankson S, Lees A. A clinicopathologic study of 100 cases of Parkinson’s disease.Arch Neurol 50: 140–148, 1993.PubMedGoogle Scholar
  64. 64.
    Diamond SG, Markham CH, Hoehn MM, McDowell FH, Muenter MD. Multi-center study of Parkinson mortality with early versus later dopa treatment.Ann Neurol 22: 8–12, 1987.PubMedGoogle Scholar
  65. 65.
    Golbe LI, Davis PH, Schoenberg BS, Duvoisin RC. Prevalence and natural history of progressive supranuclear palsy.Neurology 38: 1031–1034, 1988.PubMedGoogle Scholar
  66. 66.
    Wenning GK, Tison F, Ben-Shlomo Y, Daniel SE, Quinn N. Multiple system atrophy: a review of 203 pathologically proven cases.Mov Disord 12: 133–147, 1997.PubMedGoogle Scholar
  67. 67.
    Krack P, Pollak P, Limousin P, Hoffmann D, Benazzouz A, Le Bas JF, et al. Opposite motor effects of pallidal stimulation in Parkinson’s disease.Ann Neurol 43: 180–192, 1998.PubMedGoogle Scholar
  68. 68.
    Litvan I, Chase TN, eds. Traditional and experimental therapeutic approaches. New York: Oxford University Press, 1992.Google Scholar
  69. 69.
    Wenning GK, Pramstaller PP, Ransmayr G, Poewe W. [A typical Parkinson syndrome.]Nervenarzt 68: 102–115, 1997.PubMedGoogle Scholar
  70. 70.
    Tarsy D, Apetauerova D, Ryan P, Norregaard T. Adverse effects of subthalamic nucleus DBS in a patient with multiple system atrophy.Neurology 61: 247–249, 2003.PubMedGoogle Scholar
  71. 71.
    Visser-Vandewalle V, Temel Y, Colle H, van der Linden C. Bilateral high-frequency stimulation of the subthalamic nucleus in patients with multiple system atrophy—parkinsonism. Report of four cases.J Neurosurg 98: 882–887, 2003.PubMedGoogle Scholar
  72. 72.
    Lezcano E, Gomez-Esteban JC, Zarranz JJ, Alcaraz R, Atares B, Bilbao G, et al. Parkinson’s disease-like presentation of multiple system atrophy with poor response to STN stimulation: a clinicopathological case report.Mov Disord 19: 973–977, 2004.PubMedGoogle Scholar
  73. 73.
    Schwarz J, Linke R, Kerner M, Mozley PD, Trenkwalder C, Gasser T, et al. Striatal dopamine transporter binding assessed by [I-123]IPT and single photon emission computed tomography in patients with early Parkinson’s disease: implications for a preclinical diagnosis.Arch Neurol 57: 205–208, 2000.PubMedGoogle Scholar
  74. 74.
    Piccini P, de Yebenez J, Lees AJ, Ceravolo R, Turjanski N, Pramstaller P, et al. Familial progressive supranuclear palsy: detection of subclinical cases using 18F-dopa and 18fluorodeoxyglucose positron emission tomography.Arch Neurol 58: 1846–1851, 2001.PubMedGoogle Scholar
  75. 75.
    Dhawan V, Ma Y, Pillai V, Spetsieris P, Chaly T, Belakhlef A, et al. Comparative analysis of striatal FDOPA uptake in Parkinson’s disease: ratio method versus graphical approach.J Nucl Med 43: 1324–1330, 2002.PubMedGoogle Scholar
  76. 76.
    Ma Y, Dhawan V, Mentis M, Chaly T, Spetsieris PG, Eidelberg D. Parametric mapping of [18F]FPCIT binding in early stage Parkinson’s disease: a PET study.Synapse 45: 125–133, 2002.PubMedGoogle Scholar
  77. 77.
    Antonini A, Vontobel P, Psylla M, Gunther I, Maguire PR, Missimer J, et al. Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson’s disease.Arch Neurol 52: 1183–1190, 1995.PubMedGoogle Scholar
  78. 78.
    Antonini A, Leenders KL, Vontobel P, Maguire RP, Missimer J, Psylla M, et al. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease.Brain 120: 2187–2195, 1997.PubMedGoogle Scholar
  79. 79.
    Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss WD. Differentiating multiple system atrophy from Parkinson’s disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging.J Neurol Neurosurg Psychiatry 73: 517–523, 2002.PubMedGoogle Scholar
  80. 80.
    Braune S, Reinhardt M, Schnitzer R, Riedel A, Lucking CH. Cardiac uptake of [123I]MIBG separates Parkinson’s disease from multiple system atrophy.Neurology 53: 1020–1025, 1999.PubMedGoogle Scholar
  81. 81.
    Druschky A, Hilz MJ, Platsch G, Radespiel-Troger M, Druschky K, Kuwert T, et al. Differentiation of Parkinson’s disease and multiple system atrophy in early disease stages by means of I-123-MIBG-SPECT.J Neurol Sci 175: 3–12, 2000.PubMedGoogle Scholar
  82. 82.
    Schrag A, Good CD, Miszkiel K, Morris HR, Mathias CJ, Lees AJ, et al. Differentiation of atypical parkinsonian syndromes with routine MRI.Neurology 54: 697–702, 2000.PubMedGoogle Scholar
  83. 83.
    Seppi K, Schocke MF, Esterhammer R, Kremser C, Brenneis C, Mueller J, et al. Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy.Neurology 60: 922–927, 2003.PubMedGoogle Scholar
  84. 84.
    Eckert T, Sailer M, Kaufmann J, Schrader C, Peschel T, Bodammer N, et al. Differentiation of idiopathic Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging.Neuroimage 21: 229–235, 2004.PubMedGoogle Scholar
  85. 85.
    Martin WR, Beckman JH, Calne DB, Adam MJ, Harrop R, Rogers JG, et al. Cerebral glucose metabolism in Parkinson’s disease.Can J Neurol Sci 11: 169–173, 1984.PubMedGoogle Scholar
  86. 86.
    Wolfson LI, Leenders KL, Brown LL, Jones T. Alterations of regional cerebral blood flow and oxygen metabolism in Parkinson’s disease.Neurology 35: 1399–1405, 1985.PubMedGoogle Scholar
  87. 87.
    Gilman S, Markel DS, Koeppe RA, Junck L, Kluin KJ, Gebarski SS, et al. Cerebellar and brainstem hypometabolism in olivopontocerebellar atrophy detected with positron emission tomography.Ann Neurol 23: 223–230, 1988.PubMedGoogle Scholar
  88. 88.
    De Voider AG, Francart J, Laterre C, Dooms G, Bol A, Michel C, et al. Decreased glucose utilization in the striatum and frontal lobe in probable striatonigral degeneration.Ann Neurol 26: 239–247, 1989.Google Scholar
  89. 89.
    Eidelberg D, Takikawa S, Moeller JR, Dhawan V, Redington K, Chaly T, et al. Striatal hypometabolism distinguishes striatonigral degeneration from Parkinson’s disease.Ann Neurol 33: 518–527, 1993.PubMedGoogle Scholar
  90. 90.
    Otsuka M, Ichiya Y, Kuwabara Y, Hosokawa S, Sasaki M, Yoshida T, et al. Glucose metabolism in the cortical and subcortical brain structures in multiple system atrophy and Parkinson’s disease: a positron emission tomographic study.J Neurol Sci 144: 77–83, 1996.PubMedGoogle Scholar
  91. 91.
    Antonini A, Kazumata K, Feigin A, Mandel F, Dhawan V, Margouleff C, et al. Differential diagnosis of parkinsonism with [18F]fluorodeoxyglucose and PET.Mov Disord 13: 268–274, 1998.PubMedGoogle Scholar
  92. 92.
    Taniwaki T, Nakagawa M, Yamada T, Yoshida T, Ohyagi Y, Sasaki M, et al. Cerebral metabolic changes in early multiple system atrophy: a PET study.J Neurol Sci 200: 79–84, 2002.PubMedGoogle Scholar
  93. 93.
    Foster NL, Gilman S, Berent S, Morin EM, Brown MB, Koeppe RA. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography.Ann Neurol 24: 399–406, 1988.PubMedGoogle Scholar
  94. 94.
    Leenders KL, Frackowiak RS, Lees AJ. Steele-Richardson-Olszewski syndrome. Brain energy metabolism, blood flow and fluorodopa uptake measured by positron emission tomography.Brain 111: 615–630, 1988.PubMedGoogle Scholar
  95. 95.
    Blin J, Baron JC, Dubois B, Pillon B, Cambon H, Cambier J, et al. Positron emission tomography study in progressive supranuclear palsy. Brain hypometabolic pattern and clinicometabolic correlations.Arch Neurol 47: 747–752, 1990.PubMedGoogle Scholar
  96. 96.
    Blin J, Vidailhet MJ, Pillon B, Dubois B, Feve JR, Agid Y. Corticobasal degeneration: decreased and asymmetrical glucose consumption as studied with PET.Mov Disord 7: 348–354, 1992.PubMedGoogle Scholar
  97. 97.
    Eidelberg D, Dhawan V, Moeller JR, Sidtis JJ, Ginos JZ, Strother SC, et al. The metabolic landscape of cortico-basal ganglionic degeneration: regional asymmetries studied with positron emission tomography.J Neurol Neurosurg Psychiatry 54: 856–862, 1991.PubMedGoogle Scholar
  98. 98.
    Laureys S, Salmon E, Garraux G, Peigneux P, Lemaire C, Degueldre C, et al. Fluorodopa uptake and glucose metabolism in early stages of corticobasal degeneration.J Neurol 246: 1151–1158, 1999.PubMedGoogle Scholar
  99. 99.
    Eckert T, Barnes A, Frucht S, Dhawan V, Feigin A, Eidelberg D. Differential diagnosis of parkinsonian disorders: the diagnostic value of FDG PET.Mov Disord 19: S376, 2004.Google Scholar
  100. 100.
    Feigin A, Ma Y, Zgaljardic D, Carbon M, Dhawan V, Eidelberg D. PET measures of longitudinal progression in presymptomatic Huntington’s disease.Neurology 60(Suppl 1): A246, 2003.Google Scholar
  101. 101.
    Feigin A, Budman C, Zgaljardic D, Dhawan V, Eidelberg D. Metabolic brain networks in Tourette syndrome.Mov Disord 17(Suppl 5): S339, 2002.Google Scholar
  102. 102.
    Pavese N, Andrews TC, Brooks DJ, Ho AK, Rosser AE, Barker RA, et al. Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study.Brain 126: 1127–1135, 2003.PubMedGoogle Scholar
  103. 103.
    Aylward EH, Sparks BF, Field KM, Yallapragada V, Shpritz BD, Rosenblatt A, et al. Onset and rate of striatal atrophy in preclinical Huntington disease.Neurology 63: 66–72, 2004.PubMedGoogle Scholar
  104. 104.
    Antonini A, Leenders KL, Spiegel R, Meier D, Vontobel P, Weigell-Weber M, et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease.Brain 119: 2085–2095, 1996.PubMedGoogle Scholar
  105. 105.
    Klein C, Breakefield XO, Ozelius LJ. Genetics of primary dystonia.Semin Neurol 19: 271–280, 1999.PubMedGoogle Scholar
  106. 106.
    Eidelberg D, Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Przedborski S, et al. The metabolic topography of idiopathic torsion dystonia.Brain 118: 1473–1484, 1995.PubMedGoogle Scholar
  107. 107.
    Eidelberg D. Brain networks and clinical penetrance: lessons from hyperkinetic movement disorders.Curr Opin Neurol 16: 471–474, 2003.PubMedGoogle Scholar
  108. 108.
    Ghilardi MF, Carbon M, Silvestri G, Dhawan V, Tagliati M, Bressman S, et al. Impaired sequence learning in carriers of the DYT1 dystonia mutation.Ann Neurol 54: 102–109, 2003.PubMedGoogle Scholar
  109. 109.
    Bressman SB. Dystonia genotypes, phenotypes, and classification.Adv Neurol 94: 101–107, 2004.PubMedGoogle Scholar
  110. 110.
    Carbon M, Kingsley PB, Su S, Smith GS, Spetsieris P, Bressman S, et al. Microstructural white matter changes in carriers of the DYT1 gene mutation.Ann Neurol 56: 283–286, 2004.PubMedGoogle Scholar
  111. 111.
    Carbon M, Su S, Dhawan V, Raymond D, Bressman S, Eidelberg D. Regional metabolism in primary torsion dystonia: effects of penetrance and genotype.Neurology 62: 1384–1390, 2004.PubMedGoogle Scholar
  112. 112.
    Jenkins IH, Fernandez W, Playford ED, Lees AJ, Frackowiak RS, Passingham RE, et al. Impaired activation of the supplementary motor area in Parkinson’s disease is reversed when akinesia is treated with apomorphine.Ann Neurol 32: 749–757, 1992.PubMedGoogle Scholar
  113. 113.
    Feigin A, Ghilardi MF, Fukuda M, Mentis MJ, Dhawan V, Barnes A, et al. Effects of levodopa infusion on motor activation responses in Parkinson’s disease.Neurology 59: 220–226, 2002.PubMedGoogle Scholar
  114. 114.
    Haslinger B, Erhard P, Kampfe N, Boecker H, Rummeny E, Schwaiger M, et al. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa.Brain 124: 558–570, 2001.PubMedGoogle Scholar
  115. 115.
    Fukuda M, Mentis M, Ghilardi MF, Dhawan V, Antonini A, Hammerstad J, et al. Functional correlates of pallidal stimulation for Parkinson’s disease.Ann Neurol 49: 155–164, 2001.PubMedGoogle Scholar
  116. 116.
    Ceballos-Baumann AO. Functional imaging in Parkinson’s disease: activation studies with PET, fMRI and SPECT.J Neurol 250: I15–23, 2003.PubMedGoogle Scholar
  117. 117.
    Thobois S, Jahanshahi M, Pinto S, Frackowiak R, Limousin-Dowsey P. PET and SPECT functional imaging studies in Parkinsonian syndromes: from the lesion to its consequences.Neuroimage 23: 1–16, 2004.PubMedGoogle Scholar
  118. 118.
    Sadato N, Ibanez V, Deiber MP, Campbell G, Leonardo M, Hallett M. Frequency-dependent changes of regional cerebral blood flow during finger movements.J Cereb Blood Flow Metab 16: 23–33, 1996.PubMedGoogle Scholar
  119. 119.
    Dai TH, Liu JZ, Sahgal V, Brown RW, Yue GH. Relationship between muscle output and functional MRI-measured brain activation.Exp Brain Res 140: 290–300, 2001.PubMedGoogle Scholar
  120. 120.
    Mentis MJ, Dhawan V, Nakamura T, Ghilardi MF, Feigin A, Edwards C, et al. Enhancement of brain activation during trial-and-error sequence learning in early PD.Neurology 60: 612–619, 2003.PubMedGoogle Scholar
  121. 121.
    Fukuda M, Ghilardi MF, Carbon M, Dhawan V, Ma Y, Feigin A, et al. Pallidal stimulation for parkinsonism: improved brain activation during sequence learning.Ann Neurol 52: 144–152, 2002.PubMedGoogle Scholar
  122. 122.
    Feigin A, Ghilardi MF, Carbon M, Edwards C, Fukuda M, Dhawan V, et al. Effects of levodopa on motor sequence learning in Parkinson’s disease.Neurology 60: 1744–1749, 2003.PubMedGoogle Scholar
  123. 123.
    Carbon M, Ghilardi MF, Feigin A, Fukuda M, Silvestri G, Mentis MJ, et al. Learning networks in health and Parkinson’s disease: reproducibility and treatment effects.Hum Brain Mapp 19: 197–211, 2003.PubMedGoogle Scholar
  124. 124.
    Bammer R, Skare S, Newbould R, Liu C, Thijs V, Ropele S, Clayton DB, Krueger G, Moseley ME, Glover GH. Foundations of advanced magnetic resonance imaging.NeuroRx 2: 167–196, 2005.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2005

Authors and Affiliations

  1. 1.Department of Neurology II and PsychiatryUniversity of MagdeburgGermany
  2. 2.Center for Neurosciences, Institute for Medical ResearchNorth Shore-Long Island Jewish Health SystemManhasset
  3. 3.Department of NeurologyNew York University School of MedicineNew York

Personalised recommendations