, Volume 2, Issue 2, pp 215–225 | Cite as

Molecular optical imaging: Applications leading to the development of present day therapeutics



A number of advances in the molecular imaging field have led to the sensing of specific molecular targets and pathways in living animals. In the optical imaging field, these include the designing of biocompatible near-infrared fluorochromes, development of targeted and activatable “smart” imaging probes, and engineering of activatable fluorescent and bioluminescent proteins. The current advances in molecular optical imaging will help in early disease diagnoses, functioning of a number of pathways and finally help speed drug discovery. In this review, we will describe the near infrared fluorescent and bioluminescence imaging modalities and how these techniques have been employed in current research. Furthermore, we will also shed some light on the use of these imaging modalities in neurotherapeutics, for example imaging different parameters of vector-mediated gene expression in glioma tumors and stem cell trackingin vivo.

Key Words

Optical imaging near-infrared fluorochromes fluoresce bioluminescence viral proteases gene expression 


  1. 1.
    Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK.In vivo measurement of gene expression, angio-genesis and physiological function in tumors using multiphoton laser scanning microscopy.Nat Med 7: 864–868, 2001.PubMedCrossRefGoogle Scholar
  2. 2.
    Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, Wiedenmann B, Grotzinger C. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands.Nat Biotechnol 19: 327–331, 2001.PubMedCrossRefGoogle Scholar
  3. 3.
    Callahan R, Bogdanov A, Fischman A, Brady T, Weissleder R. Preclinical evaluation and phase 1 clinical trial of a 99mTc labeled synthetic polymer used in blood pool imaging.Am J Roentgenol 171: 137–143, 1998.Google Scholar
  4. 4.
    Tung C, Bredown S, Mahmood U, Weissleder R. Reparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging.Bioconjugate Chem 10: 892–896, 1999.CrossRefGoogle Scholar
  5. 5.
    Weissleder R, Mahmood U. Molecular imaging.Radiology 219: 316–333, 2001.PubMedGoogle Scholar
  6. 6.
    Yu AE, Hewitt RE, Connor EW. Novel targets for directed cancer therapy.Drugs Aging 11: 229–244, 1997.PubMedCrossRefGoogle Scholar
  7. 7.
    Weissleder R, Tung C-H, Mahmood U, Bogdanov A Jr.In vivo imaging of tumors with protease-activated near-infrared fluorescent probes.Nat Biotech 17: 375–378, 1999.CrossRefGoogle Scholar
  8. 8.
    Tung CH, Mahmood U, Bredow S, Weissleder R.In vivo imaging of proteolytic enzyme activity using a novel molecular reporter.Cancer Res 60: 4953–4958, 2000.PubMedGoogle Scholar
  9. 9.
    Davies B, Waxman J, Wasan H, Abel P, Williams G, Krausz T, Neal D, Thomas D, Hanby A, Balkwill F. Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion.Cancer Res 53: 5365–5369, 1993.PubMedGoogle Scholar
  10. 10.
    Zucker S, Mirza H, Conner CE, Lorenz AF, Drews MH, Bahou WF, Jesty J. Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications.Ann NY Acad Sci 878: 212–227, 1999.PubMedCrossRefGoogle Scholar
  11. 11.
    Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells.Nature 385: 729, 1997.PubMedCrossRefGoogle Scholar
  12. 12.
    Steams ME, Wang M. Type IV collagenase (M(r) 72,000) expression in human prostate: benign and malignant tissue.Cancer Res 53: 878–883, 1993.Google Scholar
  13. 13.
    Moses MA, Wiederschain D, Loughlin KR, Zurakowski D, Lamb CC, Freeman MR. Increased incidence of matrix metalloproteinases in urine of cancer patients.Cancer Res 58: 1395–1399, 1998.PubMedGoogle Scholar
  14. 14.
    Shalinsky DR, Brekken J, Zou H, McDermott CD, Forsyth P, Edwards D, Margosiak S, Bender S, Truitt G, Wood A, Varki NM, Appelt K. Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials.Ann NY Acad Sci 878: 236–270, 1999.PubMedCrossRefGoogle Scholar
  15. 15.
    Rooprai HK, McCormick D. Proteases and their inhibitors in human brain tumours: a review.Anticancer Res 17: 4151–4162, 1997.PubMedGoogle Scholar
  16. 16.
    Bremer C, Tung CH, Weissleder R.In vivo molecular target assessment of matrix metalloproteinase inhibition.Nat Med 7: 743–748, 2001.PubMedCrossRefGoogle Scholar
  17. 17.
    Gondi CS, Lakka SS, Yanamandra N, Siddique K, Dinh DH, Olivero WC, Gujrati M, Rao JS. Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis.Oncogene 22: 5967–5975, 2003.PubMedCrossRefGoogle Scholar
  18. 18.
    Gondi CS, Lakka SS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, Tung CH, Weissleder R, Rao JS. Adenovirus mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion and angiogenesis in gliomas.Cancer Res 64: 4069–4077, 2004.PubMedCrossRefGoogle Scholar
  19. 19.
    Reed JC. Apoptosis-based therapies.Nat Rev Drug Disc 1: 111–121, 2002.CrossRefGoogle Scholar
  20. 20.
    Thomberry N, Lazebnik Y. Caspases: enemies within.Science 281: 1312–1316, 1998.CrossRefGoogle Scholar
  21. 21.
    Bustamante J, Bersier G, Romero M, Badin RA, Boveris A. Nitric oxide production and mitochondrial dysfunction during rat thymocyte apoptosis.Arch Biochem Biophys 376: 239–247, 2000.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim YM, Chung HT, Simmons RL, Billiar TR. Cellular non-heme iron content is a determinant of nitric oxide-mediated apoptosis, necrosis, and caspase inhibition.J Biol Chem 275: 10954–10961, 2000.PubMedCrossRefGoogle Scholar
  23. 23.
    Thomberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes.Nature 356: 768–774, 1992.CrossRefGoogle Scholar
  24. 24.
    Messerli S, Prabhakar S, Tang Y, Shah K, Cortes M, Murthy V, Weissleder R, Breakefield XO, Tung CH. A novel method for imaging apoptosis using a caspase-1 (ICE) near-infrared imaging probe.Neoplasia 6: 95–105, 2004.PubMedCrossRefGoogle Scholar
  25. 25.
    Schlegel RA, Williamson P. Phosphatidylserine, a death knell.Cell Death Differ 8: 551–563, 2001.PubMedCrossRefGoogle Scholar
  26. 26.
    Schellenberger EA, Bogdanov A Jr, Petrovsky A, Ntziachristos V, Weissleder R, Josephson L. Optical imaging of apoptosis as a biomarker of tumor response to chemotherapy.Neoplasia 5: 187–192, 2003.PubMedGoogle Scholar
  27. 27.
    Shah K, Tung CH, Chang J, Weissleder R, Breakefield XO.In vivo imaging of HIV-1 protease activity in amplicon vector transduced gliomas.Cancer Res 64: 273–278, 2004.PubMedCrossRefGoogle Scholar
  28. 28.
    Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA. Identification and characterization of a new member of the TNF family that induces apoptosis.Immunity 3: 673–682, 1995.PubMedCrossRefGoogle Scholar
  29. 29.
    Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL.Science 277: 815–818, 1997.PubMedCrossRefGoogle Scholar
  30. 30.
    Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors.Curr Opin Cell Biol 11: 255–260, 1999.PubMedCrossRefGoogle Scholar
  31. 31.
    Shah K, Tung CH, Yang K, Weissleder R, Breakefield XO. Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy.Cancer Res 64: 3236–3242, 2004.PubMedCrossRefGoogle Scholar
  32. 32.
    Muszbek L, Yee VC, Hevessy Z. Blood coagulation factor XIII: structure and function.Thromb Res 94: 271–305, 1999.PubMedCrossRefGoogle Scholar
  33. 33.
    Jaffer FA, Tung CH, Wykzykowska JJ, Ho NH, Houng AK, Reed GL, Weissleder R. Molecular imaging of factor XIIIa activity in thrombosis using a novel, NIRF contrast agent that covalently links to thrombi.Circulation 110: 170–176, 2004.PubMedCrossRefGoogle Scholar
  34. 34.
    Contag CH, Ross BD. It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology.J Magn Reson Imaging 16: 378–387, 2002.PubMedCrossRefGoogle Scholar
  35. 35.
    Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes.J Biomed Opt 6: 432–440, 2001.PubMedCrossRefGoogle Scholar
  36. 36.
    Honigman A, Zeira E, Ohana P, Abramovitz R, Tavor E, Bar I, Zilberman Y, Rabinovsky R, Gazit D, Joseph A, Panet A, Shai E, Palmon A, Laster M, Galun E. Imaging transgene expression in live animals.Mol Ther 4: 239–249, 2001.PubMedCrossRefGoogle Scholar
  37. 37.
    Contag CH, Jenkins D, Contag PR, Negrin RS. Use of reporter genes for optical measurements of neoplastic disease in vivo.Neoplasia 2: 41–52, 2000.PubMedCrossRefGoogle Scholar
  38. 38.
    Wu JC, Sundaresan G, Iyer M, Gambhir SS. Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice.Mol Ther 4: 297–306, 2001.PubMedCrossRefGoogle Scholar
  39. 39.
    Sweeney TJ, Mailander V, Tucker AA, Olomu AB, Zhang W, Cao Y, Negrin RS, Contag CH. Visualizing the kinetics of tumor-cell clearance in living animals.Proc Natl Acad Sci USA 96: 12044–12049, 1999.PubMedCrossRefGoogle Scholar
  40. 40.
    Contag CH, Contag PR, Mullins JI, Spilman SD, Stevenson DK, Benaron DA. Photonic detection of bacterial pathogens in living hosts.Mol Microbiol 18: 593–603, 1995.PubMedCrossRefGoogle Scholar
  41. 41.
    Shah K, Tang Y, Breakefield XO, Weissleder R. Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo.Oncogene 22: 6865–6872, 2003.PubMedCrossRefGoogle Scholar
  42. 42.
    Ntziachristos V, Kreis R, Boesch C, Quistorff B. Diploar resonance frequency shifts in 1H MR spectra of skeletal muscle: confirmation in rats at 4.7 T in vivo and observation of changes postmortem.Magn Reson Med 38: 33–39, 1997.PubMedCrossRefGoogle Scholar
  43. 43.
    Shah K, Jacobs A, Breakefield XO, Weissleder R. Molecular imaging of gene therapy for cancer.Gene Ther 11: 1175–1187, 2004.PubMedCrossRefGoogle Scholar
  44. 44.
    Rehemtulla A, Hall DE, Stegman LD, Prasad U, Chen G, Bhojani MS, Chenevert TL, Ross BD. Molecular imaging of gene expression and efficacy following adenoviral-mediated brain tumor gene therapy.Mol Imaging 1: 43–55, 2002.PubMedCrossRefGoogle Scholar
  45. 45.
    Soling A, Theiss C, Jungmichel S, Rainov NG. A dual function protein of HSV-1 TK and Fluc for non invasive in vivo imaging of gene therapy in malignant gliomas.Genet Vaccines Ther 2: 7, 2004.PubMedCrossRefGoogle Scholar
  46. 46.
    Bhaumik S, Gambhir SS. Optical imaging of Renilla luciferase reporter gene expression in living mice.Proc Natl Acad Sci USA 99: 377–382, 2002.PubMedCrossRefGoogle Scholar
  47. 47.
    Laxman B, Hall DE, Bhojani MS, Hamstra DA, Chenevert TL, Ross BD, Rehemtulla A. Noninvasive real-time imaging of apoptosis.Proc Natl Acad Sci USA 99: 16551–16555, 2002.PubMedCrossRefGoogle Scholar
  48. 48.
    Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield X, Snyder EY. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas.Proc Natl Acad Sci USA 97: 12846–12851, 2000.PubMedCrossRefGoogle Scholar
  49. 49.
    Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons.Nat Biotechnol 20: 1103–1110, 2002.PubMedCrossRefGoogle Scholar
  50. 50.
    Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum.Cell 68: 33–51, 1992.PubMedCrossRefGoogle Scholar
  51. 51.
    Herrlinger U, Woiciechowski C, Sena-Esteves M, Aboody KS, Jacobs AH, Rainov NG, Snyder EY Breakefield XO. Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas.Mol Ther 1: 347–357, 2000.PubMedCrossRefGoogle Scholar
  52. 52.
    Tang Y, Shah K, Messerli SM, Snyder E, Breakefield XO, Weissleder R. In vivo tracking of neuronal progenitor cell migration to glioblastomas.Hum Gene Ther 14: 1247–1254, 2003.PubMedCrossRefGoogle Scholar
  53. 53.
    Stiles CD. Cancer of the central nervous system. Review of an AACR special conference in cancer research with the joint section on tumors of the AANS/CNS (San Diego, CA, June 7–11, 1997).Biochim Biophys Acta 1377: R1-R10, 1998.PubMedGoogle Scholar
  54. 54.
    Shah K, Bureau E, Kim D, Yang K, Tang Y, Weissleder R, Breakefield XO. Glioma therapy using TRAIL-secreting NPCs with dual imaging of NPC migration and tumor regression in vivo.Ann Neurol 57: 34–41, 2005.PubMedCrossRefGoogle Scholar
  55. 55.
    Brooks DJ. Positron emission tomography and single-photon emission computed tomography in central nervous system drug development.NeuroRx 2: 226–236, 2005.PubMedCrossRefGoogle Scholar
  56. 56.
    Devous MD. Single-photon emission computed tomography in neurotherapeutics.NeuroRx 2: 237–239, 2005.PubMedCrossRefGoogle Scholar
  57. 57.
    Bammer R, Skare S, Newbould R, Liu C, Thijs V, Ropele S, Clayton DB, Krueger G, Moseley ME, Glover GH. Foundations of advanced magnetic resonance imaging.NeuroRx 2: 167–196, 2005.PubMedCrossRefGoogle Scholar
  58. 58.
    Lin A, Ross BD, Harris K, Wong W. Efficacy of proton magnetic resonance spectroscopy in neurological diagnosis and neurotherapeutic decision-making.NeuroRx 2: 197–214, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2005

Authors and Affiliations

  1. 1.Center for Molecular Imaging ResearchMassachusetts General Hospital, Harvard Medical SchoolBoston
  2. 2.Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBoston
  3. 3.CMIRMassachusetts General HospitalCharlestown

Personalised recommendations