NeuroRX

, Volume 2, Issue 2, pp 197–214 | Cite as

Efficacy of proton magnetic resonance spectroscopy in neurological diagnosis and neurotherapeutic decision making

  • Alexander Lin
  • Brian D. Ross
  • Kent Harris
  • Willis Wong

Summary

Anatomic and functional neuroimaging with magnetic resonance imaging (MRI) includes the technology more widely known as magnetic resonance spectroscopy (MRS). Now a routine automated “add-on” to all clinical magnetic resonance scanners, MRS, which assays regional neurochemical health and disease, is therefore the most accessible diagnostic tool for clinical management of neurometabolic disorders. Furthermore, the noninvasive nature of this technique makes it an ideal tool for therapeutic monitoring of disease and neurotherapeutic decision making. Among the more than 100 brain disorders that fall within this broad category, MRS contributes decisively to clinical decision making in a smaller but growing number. In this review, we will cover how MRS provides therapeutic impact in brain tumors, metabolic disorders such as adrenoleukodystrophy and Canavan’s disease, Alzheimer’s disease, hypoxia, secondary to trauma or ischemia, human immunodeficiency virus dementia and lesions, as well as systemic disease such as hepatic and renal failure. Together, these eight indications for MRS apply to a majority of all cases seen. This review, which examines the role of MRS in enhancing routine neurological practice and treatment concludes: 1) there is added value from MRS where MRI is positive; 2) there is unique decision-making information in MRS when MRI is negative; and 3) MRS usefully informs decision making in neurotherapeutics. Additional efficacy studies could extend the range of this capability.

Key Words

Spectroscopy MRI brain tumors Alzheimer’s disease metabolic disorders hypoxia 

References

  1. 1.
    Ross BD. Real or imaginary? Human metabolism through nuclear magnetism.IUBMB Life 50: 177–187, 2000.PubMedCrossRefGoogle Scholar
  2. 2.
    Matchar D, Kulasingam S, Huntington B, Patwardhan M, Mann L. Technology assessment: Positron emission tomography, single photon emission computed tomography, computed tomography, functional magnetic resonance imaging, and magnetic resonance spectroscopy for the diagnosis and management of Alzheimer’s disease. Durham, NC: Duke Center for Clinical Health Policy Research and Evidence Practice Center, 2004.Google Scholar
  3. 3.
    Bluml S, Philippart M, Schiffmann R, Seymour K, Ross BD. Membrane phospholipids and high-energy metabolites in childhood ataxia with CNS hypomyelination.Neurology 61: 648–654, 2003.PubMedGoogle Scholar
  4. 4.
    Ross B, Lin A, Harris K, Bhattacharya P, Schweinsburg B. Clinical experience with 13C MRS in vivo.NMR Biomed 16: 358–369, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Danielsen E, Ross BD. Magnetic resonance spectroscopy diagnosis of neurological diseases. New York: Marcel-Dekker, 1999.Google Scholar
  6. 6.
    Lin A, Nguy CH, Shic F, Ross BD. Accumulation of methylsul-fonylmethane in the human brain: identification by multinuclear magnetic resonance spectroscopy.Toxicol Lett 123: 169–177, 2001.PubMedCrossRefGoogle Scholar
  7. 7.
    Lin AP, Ross BD. Short-echo time proton MR spectroscopy in the presence of gadolinium.J Comput Assist Tomogr 25: 705–712, 2001.PubMedCrossRefGoogle Scholar
  8. 8.
    Shonk TK, Moats RA, Gifford P, Michaelis T, Mandigo JC, Izumi J, et al. Probable Alzheimer disease: diagnosis with proton MR spectroscopy.Radiology 195: 65–72, 1995.PubMedGoogle Scholar
  9. 9.
    Dickerson BC, Sperling RA. Neuroimaging biomarkers for clinical trials of disease-modifying therapies in Alzheimer’s disease.NeuroRx 2: 348–360, 2005.PubMedCrossRefGoogle Scholar
  10. 10.
    Kantarci K, Xu Y, Shiung MM, O’Brien PC, Cha RH, Smith GE, et al. Comparative diagnostic utility of different MR modalities in mild cognitive impairment and Alzheimer’s disease.Dement Geriatr Cogn Disord 14: 198–207, 2002.PubMedCrossRefGoogle Scholar
  11. 11.
    Moats RA, Ernst T, Shonk TK, Ross BD. Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease.Magn Reson Med 32: 110–115, 1994.PubMedCrossRefGoogle Scholar
  12. 12.
    Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD. Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy.Radiology 187: 433–437, 1993.PubMedGoogle Scholar
  13. 13.
    Moats RA, Shonk T. Evaluation of automated MR spectroscopy: application in Alzheimer disease.AJNR Am J Neuroradiol 16: 1779–1782, 1995.PubMedGoogle Scholar
  14. 14.
    Valenzuela MJ, Sachdev P. Magnetic resonance spectroscopy in AD.Neurology 56: 592–598, 2001.PubMedGoogle Scholar
  15. 15.
    Chien N, Shieh D, Izum iJ, Nguyen C, Shic F, Lin A, et al. Validation of magnetic resonance spectroscopy in diagnosing Alzheimer’s disease.J Am Geriatr Soc 48: 176, 2000.Google Scholar
  16. 16.
    Nguy C, Zapata M, Shic F, Lin A, Shieh D, Chien N. Efficacy of magnetic resonance spectroscopy (MRS) for clinical Alzheimer’s disease.Proc Int Soc Magn Reson Med 9: 989, 2001.Google Scholar
  17. 17.
    Lin A, Kopyov O, Ross B, Philipott L, Jacques D. Monitoring intrahippocampal neurotransplant for Alzheimer’s disease.Neurology 56: 20, 2001.Google Scholar
  18. 18.
    Ross BD, Hoang TQ, Bluml S, Dubowitz D, Kopyov OV, Jacques DB, et al. In vivo magnetic resonance spectroscopy of human fetal neural transplants.NMR Biomed 12: 221–236, 1999.PubMedCrossRefGoogle Scholar
  19. 19.
    Kreis R, Ernst T, Ross BD. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy.Magn Reson Med 30: 424–437, 1993.PubMedCrossRefGoogle Scholar
  20. 20.
    Bluml S, Kopyov O, Jacques S, Ross BD. Activation of neuro-transplants in humans.Exp Neurol 158: 121–125, 1999.PubMedCrossRefGoogle Scholar
  21. 21.
    Lin A, Bluml S, Mamelak AN. Efficacy of proton magnetic resonance spectroscopy in clinical decision making for patients with suspected malignant brain tumors.J Neurooncol 45: 69–81, 1999.PubMedCrossRefGoogle Scholar
  22. 22.
    Jordan H, Bert R, Chew P, Kupelnick B, Lau J. Magnetic resonance spectroscopy for brain tumors. EPC Technical Support of the CPTA Technology Assessment Program. Prepared for the Agency for Healthcare Research and Quality (AHRQ). Rockville, MD: AHRQ; 2003. Contract No. 290-02-0022, Task Order 1.Google Scholar
  23. 23.
    Meyerhoff DJ, Bloomer C, Cardenas V, Norman D, Weiner MW, Fein G. Elevated subcortical choline metabolites in cognitively and clinically asymptomatic HIV+ patients.Neurology 52: 995–1003, 1999.PubMedGoogle Scholar
  24. 24.
    Lin A, Grossman T, Shriner K, Friedman M, Nguy C, Ling J, et al. Double blind trial of1H MRS monitoring antiretroviral therapy.Proc Int Soc Magn Reson Med 8: 1174, 2000.Google Scholar
  25. 25.
    Lin A, Denham J, Smillie J, Wijesinge A, Enriquez C, Harris K, et al. Abnormal brain 1H MRS may be predictive of lipodystrophy in HIV positive patients. Paper presented at the International Society of Magnetic Resonance in Medicine Workshop on Dynamic Spectroscopy and Measurements of Physiology, Metabolism, and Function, Orlando, FL, 2003.Google Scholar
  26. 26.
    Chang L, Miller BL, McBride D, Cornford M, Oropilla G, Buchthal S, et al. Brain lesions in patients with AIDS: H-l MR spectroscopy.Radiology 197: 525–531, 1995.PubMedGoogle Scholar
  27. 27.
    Tan J, Ross BD, Hoang TQ, Bluml S, Moats R. Retardation of PML progression by protease inhibitor.Proc Int Soc Magn Reson Med 6: 1755, 1998.Google Scholar
  28. 28.
    Seymour K, Hwang J, Bluml S, Danielsen E, Ross B. Potential of proton MRS in the management and therapeutic monitoring of white matter diseases.J Mol Neurosci 13: 258–261, 1999.Google Scholar
  29. 29.
    Eichler FS, Barker PB, Cox C, Edwin D, Ulug AM, Moser HW, et al. Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy.Neurology 58: 901–907, 2002.PubMedGoogle Scholar
  30. 30.
    Kruse B, Barker PB, van Zijl PC, Duyn JH, Moonen CT, Moser HW. Multislice proton magnetic resonance spectroscopic imaging in X-linked adrenoleukodystrophy.Ann Neurol 36: 595–608, 1994.PubMedCrossRefGoogle Scholar
  31. 31.
    Pouwels PJ, Kruse B, Korenke GC, Mao X, Hanefeld FA, Frahm J. Quantitative proton magnetic resonance spectroscopy of childhood adrenoleukodystrophy.Neuropediatrics 29: 254–264, 1998.PubMedCrossRefGoogle Scholar
  32. 32.
    Leone P. Results of human genetic engineering trials to restore aspartoacylase in cases of Canavan disease. Paper presented at the First International Symposium on N-Acetylaspartate, Bethesda, MD, September 13, 2004.Google Scholar
  33. 33.
    Cecil KM, DeGrauw TJ, Salomons GS, Jakobs C, Egelhoff JC, Clark JF. Magnetic resonance spectroscopy in a 9-day-old heterozygous female child with creatine transporter deficiency.J Comput Assist Tomogr 27: 44–47, 2003.PubMedCrossRefGoogle Scholar
  34. 34.
    Farrow N, Korula J, Kries R, Ernst T, Villami F, BD R, et al. Does transhepatic intraportal systemic shunt induce hepatic encephalopathy?Radiology 185: 173, 1992.Google Scholar
  35. 35.
    Geissler A, Farrow N, Villami F, Makowka L, Ernst T, Kries R, Ross BD. Is hepatic encephalopathy reversed by liver transplantation?Proc Soc Magn Reson Med 11: 647, 1992.Google Scholar
  36. 36.
    Shonk T, Ernst T, Lee J, Moats R, Korula J, Ross B.1H MRS defines increased incidence of hepatic encephalopathy in TIPS candidates.Proc Soc Magn Reson Med 12: 1554, 1993.Google Scholar
  37. 37.
    Kreis R, Geissler A, Ernst T, Villami F, Ross B. Reversal of chronic hepatic encephalopathy by liver transplantation as defined by localized proton magnetic resonance spectroscopy. Paper presented at the Falk Symposium, Basel, Switzerland, October 1992.Google Scholar
  38. 38.
    Michealis T, Videen J, Linsey M, Ross B. Cerebral metabolites in end stage renal disease.Proc Soc Magn Reson Med 13: 306, 1994.Google Scholar
  39. 39.
    Grodd W, Krageloh-Mann I, Klose U, Sauter R. Metabolic and destructive brain disorders in children: findings with localized proton MR spectroscopy.Radiology 181: 173–181, 1991.PubMedGoogle Scholar
  40. 40.
    Kreis R, Ernst T, Arcinue E, Lieberman R, Ross B. Myoinositol in short TE1H-MRS: a new indicator of neonatal brain development and pathology.Proc Soc Magn Reson Med 10: 1007, 1991.Google Scholar
  41. 41.
    Peden CJ, Cowan FM, Bryant DJ, Sargentoni J, Cox IJ, Menon DK, et al. Proton MR spectroscopy of the brain in infants.J Comput Assist Tomogr 14: 886–894, 1990.PubMedCrossRefGoogle Scholar
  42. 42.
    Kreis R, Arcinue E, Ernst T, Shonk TK, Flores R, Ross BD. Hypoxic encephalopathy after near-drowning studied by quantitative1H-magnetic resonance spectroscopy.J Clin Invest 97: 1142–1154, 1996.PubMedCrossRefGoogle Scholar
  43. 43.
    Ashwal S, Holshouser BA, Shu SK, Simmons PL, Perkin RM, Tomasi LG, et al. Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury.Pediatr Neurol 23: 114–125, 2000.PubMedCrossRefGoogle Scholar
  44. 44.
    GE MR Master Series: MR Spectroscopy Course. General Electric Healthcare. Available at: http://www.gehealthcare.com/usen/mr/education/docs/ross.pdf. Accessed October 2, 2004.Google Scholar
  45. 45.
    sMRT Course: Spectroscopy for MR Technologists.Spectroscopy Institute. Available at: http://www.spectroscopy.org/sMRT.htm. Accessed October 2, 2004.Google Scholar
  46. 46.
    Chan AA, Lau A, Pirzkall A, Chang SM, Verhey LJ, Larson D, et al. Proton magnetic resonance spectroscopy imaging in the evaluation of patients undergoing gamma knife surgery for Grade IV glioma.J Neurosurg 101: 467–475, 2004.PubMedCrossRefGoogle Scholar
  47. 47.
    Gajewicz W, Goraj B. [Possibilities in the differential diagnosis of brain neoplasms using the long and short time sequences of proton magnetic resonance spectroscopy].Pol Merkuriusz Lek 16: 151–156, 2004.Google Scholar
  48. 48.
    Gajewicz W, Papierz W, Szymczak W, Goraj B. The use of proton MRS in the differential diagnosis of brain tumors and tumor-like processes.Med Sci Monit 9: MT97-MT105, 2003.PubMedGoogle Scholar
  49. 49.
    Cho YD, Choi GH, Lee SP, Kim JK. (l)H-MRS metabolic patterns for distinguishing between meningiomas and other brain tumors.Magn Reson Imaging 21: 663–672, 2003.PubMedCrossRefGoogle Scholar
  50. 50.
    Dembowska-Baginska B, Perek D, Perek-Polnik M, Drogosiewicz M, Jurkiewicz E, Pakula-Kosciesza I, et al. [Can proton magnetic resonance spectroscopy be of any value as a prognostic factor in medulloblastoma?].Med Wieku Rozwoj 7: 229–239, 2003.PubMedGoogle Scholar
  51. 51.
    Rutkowski T, Tarnawski R, Sokol M, Maciejewski B.1H-MR spectroscopy of normal brain tissue before and after postoperative radiotherapy because of primary brain tumors.Int J Radiat Oncol Biol Phys 56: 1381–1389, 2003.PubMedCrossRefGoogle Scholar
  52. 52.
    Murphy PS, Rowland IJ, Viviers L, Brada M, Leach MO, Dzik-Jurasz AS. Could assessment of glioma methylene lipid resonance by in vivo (l)H-MRS be of clinical value?Br J Radiol 76: 459–463, 2003.PubMedCrossRefGoogle Scholar
  53. 53.
    Weber MA, Lichy MP, Thilmann C, Gunther M, Bachert P, Maudsley AA, et al. [Monitoring of irradiated brain metastases using MR perfusion imaging and1H MR spectroscopy].Radiologe 43: 388–395, 2003.PubMedCrossRefGoogle Scholar
  54. 54.
    Kubas B, Tarasow E, Dzienis W, Lebkowski W, Zimnoch L, Dzieciol J, et al. [Magnetic resonance proton spectroscopy in neurooncology—preliminary report].Neurol Neurochir Pol 35(Suppl 5): 90–100, 2001.PubMedGoogle Scholar
  55. 55.
    Traber F, Block W, Flacke S, Lamerichs R, Schuller H, Urbach H, et al. [1H-MR spectroscopy of brain tumors in the course of radiation therapy: use of fast spectroscopic imaging and single-voxel spectroscopy for diagnosing recurrence].Rofo 174: 33–42, 2002.PubMedGoogle Scholar
  56. 56.
    Sabatier J, Ibarrola D, Malet-Martino M, Berry I. [Brain tumors: interest of magnetic resonance spectroscopy for the diagnosis and the prognosis].Rev Neurol (Paris) 157: 858–862, 2001.Google Scholar
  57. 57.
    Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR, et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens.AJNR Am J Neuroradiol 22: 604–612, 2001.PubMedGoogle Scholar
  58. 58.
    Walecki J, Sokol M, Pieniazek P, Maciejewski B, Tarnawski R, Krupska T, et al. Role of short TE1H-MR spectroscopy in monitoring of post-operation irradiated patients.Eur J Radiol 30: 154–161, 1999.PubMedCrossRefGoogle Scholar
  59. 59.
    Girard N, Wang ZJ, Erbetta A, Sutton LN, Phillips PC, Rorke LB, et al. Prognostic value of proton MR spectroscopy of cerebral hemisphere tumors in children.Neuroradiology 40: 121–125, 1998.PubMedCrossRefGoogle Scholar
  60. 60.
    Taylor JS, Langston JW, Reddick WE, Kingsley PB, Ogg RJ, Pui MH, et al. Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis.Int J Radiat Oncol Biol Phys 36: 1251–1261, 1996.PubMedCrossRefGoogle Scholar
  61. 61.
    Moats RA, Watson L, Shonk T, Tokuyama S, Braslau D, Eto R, et al. Added value of automated clinical proton MR spectroscopy of the brain.J Comput Assist Tomogr 19: 480–491, 1995.PubMedCrossRefGoogle Scholar
  62. 62.
    Rudkin TM, Arnold DL. Proton magnetic resonance spectroscopy for the diagnosis and management of cerebral disorders.Arch Neurol 56: 919–926, 1999.PubMedCrossRefGoogle Scholar
  63. 63.
    Silberstein M, Dodd S. Proton MR spectroscopy of the brain: clinically useful information obtained in assessing CNS damage in children.AJR Am J Roentgenol 168: 1379–1380, 1997.PubMedGoogle Scholar
  64. 64.
    Wang Z, Zimmerman RA, Sauter R. Proton MR spectroscopy of the brain: clinically useful information obtained in assessing CNS diseases in children.AJR Am J Roentgenol 167: 191–199, 1996.PubMedGoogle Scholar
  65. 65.
    Holshouser BA, Ashwal S, Luh GY, Shu S, Kahlon S, Auld KL, et al. Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children.Radiology 202: 487–496, 1997.PubMedGoogle Scholar
  66. 66.
    Ashwal S, Holshouser BA, Tomasi LG, Shu S, Perkin RM, Nystrom GA, et al.1H-magnetic resonance spectroscopy-determined cerebral lactate and poor neurological outcomes in children with central nervous system disease.Ann Neurol 41: 470–481, 1997.PubMedCrossRefGoogle Scholar
  67. 67.
    Danielsen ER, Thomsen C. [Proton MRS: a prognostic and diagnostic tool in the diagnosis of diffuse brain diseases].Ugeskr Laeger 163: 4358–4364, 2001.PubMedGoogle Scholar
  68. 68.
    Korson MS. Advances in newborn screening for metabolic disorders: what the pediatrician needs to know.Pediatr Ann 29: 294–301, 2000.PubMedGoogle Scholar
  69. 69.
    Garnett MR, Blamire AM, Rajagopalan B, Styles P, Cadoux-Hudson TA. Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: a magnetic resonance spectroscopy study.Brain 123(Pt 7): 1403–1409, 2000.PubMedCrossRefGoogle Scholar
  70. 70.
    Rovaris M, Filippi M. The value of new magnetic resonance techniques in multiple sclerosis.Curr Opin Neurol 13: 249–254, 2000.PubMedCrossRefGoogle Scholar
  71. 71.
    Hagberg G. From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods.NMR Biomed 11: 148–156, 1998.PubMedCrossRefGoogle Scholar
  72. 72.
    Taylor DJ. Clinical utility of muscle MR spectroscopy.Semin Musculoskelet Radiol 4: 481–502, 2000.PubMedCrossRefGoogle Scholar
  73. 73.
    Lichy MP, Bachert P, Henze M, Lichy CM, Debus J, Schlemmer HP. Monitoring individual response to brain-tumour chemotherapy: proton MR spectroscopy in a patient with recurrent glioma after stereotactic radiotherapy.Neuroradiology 46: 126–129, 2004.PubMedCrossRefGoogle Scholar
  74. 74.
    Grand S, Esteve F, Remy C, Rubin C, Le Bas JF. [Proton magnetic resonance spectroscopy: a metabolic approach of cerebral tumors and their follow-up after external radiation therapy].Rev Med Interne 18: 865–875, 1997.PubMedCrossRefGoogle Scholar
  75. 75.
    Byrd SE, Tomita T, Palka PS, Darling CF, Norfray JP, Fan J. Magnetic resonance spectroscopy (MRS) in the evaluation of pediatric brain tumors. Part II: Clinical analysis.J Natl Med Assoc 88: 717–723, 1996.PubMedGoogle Scholar
  76. 76.
    Houkin K, Kamada K, Sawamura Y, Iwasaki Y, Abe H, Kashiwaba T. Proton magnetic resonance spectroscopy (1H-MRS) for the evaluation of treatment of brain tumours.Neuroradiology 37: 99–103, 1995.PubMedGoogle Scholar
  77. 77.
    Vion-Dury J, Meyerhoff DJ, Cozzone PJ, Weiner MW. What might be the impact on neurology of the analysis of brain metabolism by in vivo magnetic resonance spectroscopy?J Neurol 241: 354–371, 1994.PubMedCrossRefGoogle Scholar
  78. 78.
    Swindells S, McConnell JR, McComb RD, Gendelman HE. Utility of cerebral proton magnetic resonance spectroscopy in differential diagnosis of HIV-related dementia.J Neurovirol 1: 268–274, 1995.PubMedCrossRefGoogle Scholar
  79. 79.
    McConnell JR, Swindells S, Ong CS, Gmeiner WH, Chu WK, Brown DK, et al. Prospective utility of cerebral proton magnetic resonance spectroscopy in monitoring HIV infection and its associated neurological impairment.AIDS Res Hum Retroviruses 10: 977–982, 1994.PubMedCrossRefGoogle Scholar
  80. 80.
    Ernst T, Chang L, Arnold S. Increased glial metabolites predict increased working memory network activation in HIV brain injury.Neuroimage 19: 1686–1693, 2003.PubMedCrossRefGoogle Scholar
  81. 81.
    Shu SK, Ashwal S, Holshouser BA, Nystrom G, Hinshaw DB Jr. Rognostic value of1H-MRS in perinatal CNS insults.Pediatr Neurol 17: 309–318, 1997.PubMedCrossRefGoogle Scholar
  82. 82.
    Jalan R, Olde Damink SW, Hayes PC, Wardlaw JM. Diagnosis of hepatic encephalopathy: will in vivo proton MRS play a role?Hepatology 29: 1605–1607, 1999.PubMedCrossRefGoogle Scholar
  83. 83.
    Ross BD, Danielsen ER, Bluml S. Proton magnetic resonance spectroscopy: the new gold standard for diagnosis of clinical and subclinical hepatic encephalopathy?Dig Dis 14(Suppl l): 30–39, 1996.PubMedCrossRefGoogle Scholar
  84. 84.
    Barkovich AJ, Baranski K, Vigneron D, Partridge JC, Hallam DK, Hajnal BL, et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates.AJNR Am J Neuroradiol 20: 1399–1405, 1999.PubMedGoogle Scholar
  85. 85.
    Amess PN, Penrice J, Wylezinska M, Lorek A, Townsend J, Wyatt JS, et al. Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain injury.Dev Med Child Neurol 41: 436–445, 1999.PubMedCrossRefGoogle Scholar
  86. 86.
    Groenendaal F, van der Grond J, Eken P, van Haastert IC, Rademaker KJ, Toet MC, et al. Early cerebral proton MRS and neurodevelopmental outcome in infants with cystic leukomalacia.Dev Med Child Neurol 39: 373–379, 1997.PubMedCrossRefGoogle Scholar
  87. 87.
    Garnett MR, Blamire AM, Corkill RG, Cadoux-Hudson TA, Rajagopalan B, Styles P. Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury.Brain 123(Pt 10): 2046–2054, 2000.PubMedCrossRefGoogle Scholar
  88. 88.
    Friedman SD, Brooks WM, Jung RE, Chiulli SJ, Sloan JH, Montoya BT, et al. Quantitative proton MRS predicts outcome after traumatic brain injury.Neurology 52: 1384–1391, 1999.PubMedGoogle Scholar
  89. 89.
    Federico F, Simone IL, Lucivero V, Giannini P, Laddomada G, Mezzapesa DM, et al. Prognostic value of proton magnetic resonance spectroscopy in ischemic stroke.Arch Neurol 55: 489–494, 1998.PubMedCrossRefGoogle Scholar
  90. 90.
    Hsu YY, Chang CN, Chu NS, Lim KE, Chang C, Hsu JC. Lateralization and prognostic value of proton magnetic resonance spectroscopy in patients with intractable temporal lobe epilepsy.Chang Gung Med J 24: 768–778, 2001.PubMedGoogle Scholar
  91. 91.
    Chang KH, Kim HD, Park SW, Song IC, Yu IK, Han MH, et al. Usefulness of single voxel proton MR spectroscopy in the evaluation of hippocampal sclerosis.Korean J Radiol 1: 25–32, 2000.PubMedCrossRefGoogle Scholar
  92. 92.
    Waldman AD, Rai GS, McConnell JR, Chaudry M, Grant D. Clinical brain proton magnetic resonance spectroscopy for management of Alzheimer’s and sub-cortical ischemic vascular dementia in older people.Arch Gerontol Geriatr 35: 137–142, 2002.PubMedCrossRefGoogle Scholar
  93. 93.
    Vion-Dury J, Salvan AM, Confort-Gouny S, Cozzone PJ. [Brain proton magnetic resonance spectroscopy. Indications for diagnosis and follow-up of HIV-related encephalopathy in the adult].Presse Med 27: 1398–1405, 1998.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2005

Authors and Affiliations

  • Alexander Lin
    • 1
  • Brian D. Ross
    • 1
    • 2
  • Kent Harris
    • 2
  • Willis Wong
    • 1
  1. 1.Rudi Schulte Research InstituteSanta Barbara
  2. 2.Huntington Medical Research InstitutesPasadena

Personalised recommendations