, Volume 2, Issue 1, pp 73–85 | Cite as

Active efflux across the blood-brain barrier: Role of the solute carrier family


The brain uptake of xenobiotics is restricted by the blood-brain brain barrier formed by brain capillary endothelial cells. Active efflux transport systems in the blood-brain barrier work as a detoxification system in the brain by facilitating removal of xenobiotic compounds from the brain. Drugs, acting in the brain, have to overcome such efflux mechanisms to achieve clinically significant concentration in the brain. Multiple transporters are involved in this efflux transport in the brain capillaries. In the past few years, considerable progress has been made in the cloning of these transporters and their functional characterization after heterologous expression. Members of the solute carrier family (SLC) play an important role in the efflux transport, especially for organic anions, which include organic anion transporting polypeptides (OATP/SLCO) and organic anion transporters (OAT/SLC22A). It is believed that coordination of the members of SLC family, and ABC transporters, such as P-glycoprotein, multidrug resistance protein, and breast cancer-resistant protein (BCRP/ABCG2), allows an efficient vectorial transport across the endothelial cells to remove xenobiotics from the brain. In this review, we shall summarize our current knowledge about their localization, molecular and functional characteristics, and substrate and inhibitor specificity.

Key Words

Efflux blood-brain barrier organic anion transporter OAT OATP ABC transporter 


  1. 1.
    Pardridge WM. Introduction to the blood-brain barrier. Cambridge University Press, 1998.Google Scholar
  2. 2.
    Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier.Prog Drug Res 61: 39–78, 2003.PubMedGoogle Scholar
  3. 3.
    Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis.Physiol Rev 84: 869–901, 2004.PubMedCrossRefGoogle Scholar
  4. 4.
    Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice.J Cell Biol 161: 653–660, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Segal MB. The choroid plexuses and the barriers between the blood and the cerebrospinal fluid.Cell Mol Neurobiol 20: 183–196, 2000.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations.Pharmacol Rev 53: 569–596, 2001.PubMedGoogle Scholar
  7. 7.
    Kusuhara H, Sugiyama Y. Efflux transport systems for drugs at the blood-brain barrier and blood-cerebrospinal fluid barrier (Part 1).Drug Discov Today 6: 150–156, 2001.PubMedCrossRefGoogle Scholar
  8. 8.
    Sun H, Dai H, Shaik N, Elmquist WF. Drug efflux transporters in the CNS.Adv Drug Deliv Rev 55: 83–105, 2003.PubMedCrossRefGoogle Scholar
  9. 9.
    Begley DJ. ABC transporters and the blood-brain barrier.Curr Pharm Des 10: 1295–1312, 2004.PubMedCrossRefGoogle Scholar
  10. 10.
    Lin JH. How significant is the role of P-glycoprotein in drug absorption and brain uptake?Drugs Today (Barc) 40: 5–22, 2004.CrossRefGoogle Scholar
  11. 11.
    Schinkel AH. P-Glycoprotein, a gatekeeper in the blood-brain barrier.Adv Drug Deliv Rev 36: 179–194, 1999.PubMedCrossRefGoogle Scholar
  12. 12.
    Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y. Impact of drug transporter studies on drug discovery and development.Pharmacol Rev 55: 425–461, 2003.PubMedCrossRefGoogle Scholar
  13. 13.
    Sakata A, Tamai I, Kawazu K, Deguchi Y, Ohnishi T, Saheki A, et al. In vivo evidence for ATP-dependent and P-glycoprotein-mediated transport of cyclosporin A at the blood-brain barrier.Biochem Pharmacol 48: 1989–1992, 1994.PubMedCrossRefGoogle Scholar
  14. 14.
    Ohnishi T, Tamai I, Sakanaka K, Sakata A, Yamashima T, Yamashita J, et al. In vivo and in vitro evidence for ATP-dependency of P-glycoprotein-mediated efflux of doxorubicin at the blood-brain barrier.Biochem Pharmacol 49: 1541–1544, 1995.PubMedCrossRefGoogle Scholar
  15. 15.
    Hagenbuch B, Meier PJ. The superfamily of organic anion transporting polypeptides.Biochim Biophys Acta 1609: 1–18, 2003.PubMedCrossRefGoogle Scholar
  16. 16.
    Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties.Pflugers Arch 447: 653–665, 2004.PubMedCrossRefGoogle Scholar
  17. 17.
    Abe T, Kakyo M, Sakagami H, Tokui T, Nishio T, Tanemoto M, et al. Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2.J Biol Chem 273: 22395–22401, 1998.PubMedCrossRefGoogle Scholar
  18. 18.
    Noe B, Hagenbuch B, Stieger B, Meier PJ. Isolation of a multispecific organic anion and cardiac glycoside transporter from rat brain.Proc Natl Acad Sci USA 94: 10346–10350, 1997.PubMedCrossRefGoogle Scholar
  19. 19.
    Gao B, Stieger B, Noe B, Fritschy JM, Meier PJ. Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary endothelium and choroid plexus epithelium of rat brain.J Histochem Cytochem 47: 1255–1264, 1999.PubMedCrossRefGoogle Scholar
  20. 20.
    Reichel C, Gao B, Van Montfoort J, Cattori V, Rahner C, Hagenbuch B, et al. Localization and function of the organic aniontransporting polypeptide Oatp2 in rat liver.Gastroenterology 117: 688–695, 1999.PubMedCrossRefGoogle Scholar
  21. 21.
    Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, Meier PJ. Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier.J Pharmacol Exp Ther 294: 73–79, 2000.PubMedGoogle Scholar
  22. 22.
    van Montfoort JE, Hagenbuch B, Fattinger KE, Muller M, Groothuis GM, Meijer DK, et al. Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations.J Pharmacol Exp Ther 291: 147–152, 1999.PubMedGoogle Scholar
  23. 23.
    Li L, Meier PJ, Ballatori N. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione.Mol Pharmacol 58: 335–340, 2000.PubMedGoogle Scholar
  24. 24.
    Walters HC, Craddock AL, Fusegawa H, Willingham MC, Dawson PA. Expression, transport properties, and chromosomal location of organic anion transporter subtype 3.Am J Physiol (Lond) Gastrointest Liver Physiol 279: G1188-G1200, 2000.Google Scholar
  25. 25.
    Li N, Hartley DP, Cherrington NJ, Klaassen CD. Tissue expression, ontogeny, and inducibility of rat organic anion transporting polypeptide 4.J Pharmacol Exp Ther 301: 551–560, 2002.PubMedCrossRefGoogle Scholar
  26. 26.
    Kusuhara H, He Z, Nagata Y, Nozaki Y, Ito T, Masuda H, et al. Expression and functional involvement of organic anion transporting polypeptide subtype 3 (Slc21a7) in rat choroid plexus.Pharm Res 20: 720–727, 2003.PubMedCrossRefGoogle Scholar
  27. 27.
    Ohtsuki S, Takizawa T, Takanaga H, Hori S, Hosoya K, Terasaki T, Localization of organic anion transporting polypeptide 3 (oatp3) in mouse brain parenchymal and capillary endothelial cells.J Neurochem 90: 743–749, 2004.PubMedCrossRefGoogle Scholar
  28. 28.
    Cattori V, van Montfoort JE, Stieger B, Landmann L, Meijer DK, Winterhalter KH, et al. Localization of organic anion transporting polypeptide 4 (Oatp4) in rat liver and comparison of its substrate specificity with Oatpl, Oatp2 and Oatp3.Pflugers Arch 443: 188–195, 2001.PubMedCrossRefGoogle Scholar
  29. 29.
    Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1.J Biol Chem 274: 17159–17163, 1999.PubMedCrossRefGoogle Scholar
  30. 30.
    Kullak-Ublick GA, Hagenbuch B, Stieger B, Schteingart CD, Hofmann AF, Wolkoff AW, et al. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver.Gastroenterology 109: 1274–1282, 1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Bossuyt X, Muller M, Meier PJ. Multispecific amphipathic substrate transport by an organic anion transporter of human liver.J Hepatol 25: 733–738, 1996.PubMedCrossRefGoogle Scholar
  32. 32.
    Leininger B, Ghersi-Egea JF, Siest G, Minn A. In vivo study of the elimination from rat brain of an intracerebrally formed xenobiotic metabolite, 1-naphthyl-β-D-glucuronide.J Neurochem 56: 1163–1168, 1991.PubMedCrossRefGoogle Scholar
  33. 33.
    Banks WA, Kastin AJ, Sam HM, Cao VT, King B, Maness LM, et al. Saturable efflux of the peptides RC-160 and Tyr-MIF-1 by different parts of the blood-brain barrier.Brain Res Bull 35: 179–182, 1994.PubMedCrossRefGoogle Scholar
  34. 34.
    Kitazawa T, Terasaki T, Suzuki H, Kakee A, Sugiyama Y, Efflux of taurocholic acid across the blood-brain barrier: interaction with cyclic peptides,J Pharmacol Exp Ther 286: 890–895, 1998.PubMedGoogle Scholar
  35. 35.
    Asaba H, Hosoya K, Takanaga H, Ohtsuki S, Tamura E, Takizawa T, et al. Blood-brain barrier is involved in the efflux transport of a neuroactive steroid, dehydroepiandrosterone sulfate, via organic anion transporting polypeptide 2.J Neurochem 75: 1907–1916, 2000.PubMedCrossRefGoogle Scholar
  36. 36.
    Hosoya K, Asaba H, Terasaki T. Brain-to-blood efflux transport of estrone-3-sulfate at the blood-brain barrier in rats.Life Sci 67: 2699–2711, 2000.PubMedCrossRefGoogle Scholar
  37. 37.
    Sugiyama D, Kusuhara H, Shitara Y, Abe T, Meier PJ, Sekine T, et al. Characterization of the efflux transport of 17β-estradiol-D-17β-glucuronide from the brain across the blood-brain barrier.J Pharmacol Exp Ther 298: 316–322, 2001.PubMedGoogle Scholar
  38. 38.
    Sugiyama D, Kusuhara H, Shitara Y, Abe T, Sugiyama Y, Effect of 17β-estradiol-D-17β-glucuronide on the rat organic anion transporting polypeptide 2-mediated transport differs depending on substrates.Drug Metab Dispos 30: 220–223, 2002.PubMedCrossRefGoogle Scholar
  39. 39.
    Schumacher M, Guennoun R, Robel P, Baulieu EE. Neurosteroids in the hippocampus: neuronal plasticity and memory.Stress 2: 65–78, 1997.PubMedCrossRefGoogle Scholar
  40. 40.
    Kawato S, Yamada M, Kimoto T. Brain neurosteroids are 4th generation neuromessengers in the brain: cell biophysical analysis of steroid signal transduction.Adv Biophys 37: 1–48, 2003.PubMedCrossRefGoogle Scholar
  41. 41.
    Dagenais C, Ducharme J, Pollack GM. Uptake and efflux of the peptidic delta-opioid receptor agonist.Neurosci Lett 301: 155–158, 2001.PubMedCrossRefGoogle Scholar
  42. 42.
    Hosoya K, Tetsuka K, Nagase K, Tomi M, Saeki S, Ohtsuki S, et al. Conditionally immortalized brain capillary endothelial cell lines established from a transgenic mouse harboring temperature-sensitive simian virus 40 large T-antigen gene.AAPS PharmSci 2: E27, 2000.PubMedCrossRefGoogle Scholar
  43. 43.
    Li JY, Boado RJ, Pardridge WM. Blood-brain barrier genomics.J Cereb Blood Flow Metab 21: 61–68, 2001.PubMedCrossRefGoogle Scholar
  44. 44.
    Sugiyama D, Kusuhara H, Taniguchi H, Ishikawa S, Nozaki Y, Aburatani H, et al. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood-brain barrier: high affinity transporter for thyroxine.J Biol Chem 278: 43489–43495, 2003.PubMedCrossRefGoogle Scholar
  45. 45.
    Tohyama K, Kusuhara H, Sugiyama Y. Involvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood-brain barrier.Endocrinology 145: 4384–4391, 2004.PubMedCrossRefGoogle Scholar
  46. 46.
    Pizzagalli F, Hagenbuch B, Stieger B, Klenk U, Folkers G, Meier PJ. Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter.Mol Endocrinol 16: 2283–2296, 2002.PubMedCrossRefGoogle Scholar
  47. 47.
    Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels.Nature 417: 447–452, 2002.PubMedGoogle Scholar
  48. 48.
    Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, Anzai N, et al. Molecular identification of a novel camitine transporter specific to human testis. Insights into the mechanism of carnitine recognition.J Biol Chem 277: 36262–36271, 2002.PubMedCrossRefGoogle Scholar
  49. 49.
    Koepsell H, Endou H. The SLC22 drug transporter family.Pflugers Arch 447: 666–676, 2004.PubMedCrossRefGoogle Scholar
  50. 50.
    Kusuhara H, Sekine T, Utsunomiya-Tate N, Tsuda M, Kojima R, Cha SH, et al. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain.J Biol Chem 274: 13675–13680, 1999.PubMedCrossRefGoogle Scholar
  51. 51.
    Kikuchi R, Kusuhara H, Sugiyama D, Sugiyama Y. Contribution of organic anion transporter 3 (Slc22a8) to the elimination of p-aminohippuric acid and benzylpenicillin across the blood-brain barrier.J Pharmacol Exp Ther 306: 51–58, 2003.PubMedCrossRefGoogle Scholar
  52. 52.
    Mori S, Takanaga H, Ohtsuki S, Deguchi T, Kang YS, Hosoya K, et al. Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells.J Cereb Blood Flow Metab 23: 432–440, 2003.PubMedCrossRefGoogle Scholar
  53. 53.
    Ohtsuki S, Asaba H, Takanaga H, Deguchi T, Hosoya K, Otagiri M, et al. Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain.J Neurochem 83: 57–66, 2002.PubMedCrossRefGoogle Scholar
  54. 54.
    Ohtsuki S, Kikkawa T, Mori S, Hori S, Takanaga H, Otagiri M, et al. Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood-brain barrier.J Pharmacol Exp Ther 309: 1273–1281, 2004.PubMedCrossRefGoogle Scholar
  55. 55.
    Nagata Y, Kusuhara H, Endou H, Sugiyama Y. Expression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus.Mol Pharmacol 61: 982–988, 2002.PubMedCrossRefGoogle Scholar
  56. 56.
    Alebouyeh M, Takeda M, Onozato ML, Tojo A, Noshiro R, Hasannejad H, et al. Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites.J Pharmacol Sci 93: 430–436, 2003.PubMedCrossRefGoogle Scholar
  57. 57.
    Nagata Y, Kusuhara H, Hirono S, Endou H, Sugiyama Y. Carrier-mediated uptake of H2-receptor antagonists by the rat choroid plexus: involvement of rat organic anion transporter 3.Drug Metab Dispos 32: 1040–1047, 2004.PubMedGoogle Scholar
  58. 58.
    Sweet DH, Chan LM, Waiden R, Yang XP, Miller DS, Pritchard JB. Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient.Am J Physiol (Lond) Renal Physiol 284: F763-F769, 2003.Google Scholar
  59. 59.
    Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice.J Biol Chem 277: 26934–26943, 2002.PubMedCrossRefGoogle Scholar
  60. 60.
    Sugiyama D, Kusuhara H, Lee YJ, Sugiyama Y. Involvement of multidrug resistance associated protein 1 (Mrp1) in the efflux transport of 17β estradiol-D-17β-glucuronide (E217βG) across the blood-brain barrier.Pharm Res 20: 1394–1400, 2003.PubMedCrossRefGoogle Scholar
  61. 61.
    Hasegawa M, Kusuhara H, Endou H, Sugiyama Y. Contribution of organic anion transporters to the renal uptake of anionic compounds and nucleoside derivatives in rat.J Pharmacol Exp Ther 305: 1087–1097, 2003.PubMedCrossRefGoogle Scholar
  62. 62.
    Hasegawa M, Kusuhara H, Sugiyama D, Ito K, Ueda S, Endou H, et al. Functional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions.J Pharmacol Exp Ther 300: 746–753, 2002.PubMedCrossRefGoogle Scholar
  63. 63.
    Kakee A, Terasaki T, Sugiyama Y. Selective brain to blood efflux transport of para-aminohippuric acid across the blood-brain barrier: in vivo evidence by use of the brain efflux index method.J Pharmacol Exp Ther 283: 1018–1025, 1997.PubMedGoogle Scholar
  64. 64.
    Suzuki H, Sawada Y, Sugiyama Y, Iga T, Hanano M. Facilitated transport of benzylpenicillin through the blood-brain barrier in rats.J Pharmacobiodyn 12: 182–185, 1989.PubMedGoogle Scholar
  65. 65.
    Mori K, Ogawa Y, Ebihara K, Aoki T, Tamura N, Sugawara A, et al. Kidney-specific expression of a novel mouse organic cation transporter-like protein.FEBS Lett 417: 371–374, 1997.PubMedCrossRefGoogle Scholar
  66. 66.
    Imaoka T, Kusuhara H, Adachi-Akahane S, Hasegawa M, Endou H, Sugiyama Y. The renal-specific transporter mediates facilitative transport of organic anions at the brush border membrane of mouse renal tubules.J Am Soc Nephrol 15: 2012–2022, 2004.PubMedCrossRefGoogle Scholar
  67. 67.
    Breen CM, Sykes DB, Flicker G, Miller DS. Confocal imaging of organic anion transport in intact rat choroid plexus.Am J Physiol (Lond) Renal Physiol 282: F877-F885, 2002.Google Scholar
  68. 68.
    Kido Y, Tamai I, Ohnari A, Sai Y, Kagami T, Nezu J, et al. Functional relevance of camitine transporter OCTN2 to brain distribution of L-camitine and acetyl-L-camitine across the blood-brain barrier.J Neurochem 79: 959–969, 2001.PubMedCrossRefGoogle Scholar
  69. 69.
    Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, et al. Molecular and functional identification of sodium ion-dependent, high affinity human camitine transporter OCTN2.J Biol Chem 273: 20378–20382, 1998.PubMedCrossRefGoogle Scholar
  70. 70.
    Sekine T, Kusuhara H, Utsunomiya-Tate N, Tsuda M, Sugiyama Y, Kanai Y, et al. Molecular cloning and characterization of high-affinity camitine transporter from rat intestine.Biochem Biophys Res Commun 251: 586–591, 1998.PubMedCrossRefGoogle Scholar
  71. 71.
    Tamai I, Ohashi R, Nezu JI, Sai Y, Kobayashi D, Oku A, et al. Molecular and functional characterization of organic cation/carnitine transporter family in mice.J Biol Chem 275: 40064–40072, 2000.PubMedCrossRefGoogle Scholar
  72. 72.
    Nezu J, Tamai I, Oku A, Ohashi R, Yabuuchi H, Hashimoto N, et al. Primary systemic camitine deficiency is caused by mutations in a gene encoding sodium ion-dependent camitine transporter.Nat Genet 21: 91–94, 1999.PubMedCrossRefGoogle Scholar
  73. 73.
    Inano A, Sai Y, Nikaido H, Hasimoto N, Asano M, Tsuji A, et al. Acetyl-L-camitine permeability across the blood-brain barrier and involvement of camitine transporter OCTN2.Biopharm Drug Dispos 24: 357–365, 2003.PubMedCrossRefGoogle Scholar
  74. 74.
    Yokogawa K, Higashi Y, Tamai I, Nomura M, Hashimoto N, Nikaido H, et al. Decreased tissue distribution of L-carnitine in juvenile visceral steatosis mice.J Pharmacol Exp Ther 289: 224–230, 1999.PubMedGoogle Scholar
  75. 75.
    Ohashi R, Tamai I, Nezu Ji J, Nikaido H, Hashimoto N, Oku A, et al. Molecular and physiological evidence for multifunctionality of camitine/organic cation transporter OCTN2.Mol Pharmacol 59: 358–366, 2001.PubMedGoogle Scholar
  76. 76.
    Koepsell H, Gorboulev V, Arndt P. Molecular pharmacology of organic cation transporters in kidney.J Membr Biol 167: 103–117, 1999.PubMedCrossRefGoogle Scholar
  77. 77.
    Sweet DH, Miller DS, Pritchard JB. Ventricular choline transport: a role for organic cation transporter 2 expressed in choroid plexus.J Biol Chem 276: 41611–41619, 2001.PubMedCrossRefGoogle Scholar
  78. 78.
    Choudhuri S, Cherrington NJ, Li N, Klaassen CD. Constitutive expression of various xenobiotic and endobiotic transporter mR-NAs in the choroid plexus of rats.Drug Metab Dispos 31: 1337–1345, 2003.PubMedCrossRefGoogle Scholar
  79. 79.
    Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP. Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice.Mol Cell Biol 21: 4188–4196, 2001.PubMedCrossRefGoogle Scholar
  80. 80.
    Jonker JW, Wagenaar E, Mol CA, Buitelaar M, Koepsell H, Smit JW, et al. Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 [Slc22a1]) gene.Mol Cell Biol 21: 5471–5477, 2001.PubMedCrossRefGoogle Scholar
  81. 81.
    Jonker JW, Wagenaar E, Van Eijl S, Schinkel AH. Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations.Mol Cell Biol 23: 7902–7908, 2003.PubMedCrossRefGoogle Scholar
  82. 82.
    Miller DS, Nobmann SN, Gutmann H, Toeroek M, Drewe J, Flicker G. Xenobiotic transport across isolated brain microvessels studied by confocal microscopy,Mol Pharmacol 58: 1357–1367, 2000.PubMedGoogle Scholar
  83. 83.
    Zhang Y, Schuetz JD, Elmquist WF, Miller DW. Plasma membrane localization of multidrug resistance-associated protein (MRP) homologues in brain capillary endothelial cells.J Pharmacol Exp Ther 311:449–55.Google Scholar
  84. 83a.
    Leggas M, Adachi M, Scheffer GL, Sun D, Wielinga P, Du G, Mercer KE, Zhuang Y, Panetta JC, Johnston B, Scheper RJ, Stewart CF, Schuetz JD. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy.Mol Cell Biol 24: 7612–7621, 2004.PubMedCrossRefGoogle Scholar
  85. 84.
    Cistemino S, Mercier C, Bourasset F, Roux F, Scherrmann JM. Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier.Cancer Res 64: 3296–3301, 2004.CrossRefGoogle Scholar
  86. 85.
    Hori S, Ohtsuki S, Tachikawa M, Kimura N, Kondo T, Watanabe M, et al. Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s).J Neurochem 90: 526–536, 2004.PubMedCrossRefGoogle Scholar
  87. 86.
    Cooray HC, Blackmore CG, Maskell L, Barrand MA. Localisation of breast cancer resistance protein in microvessel endothelium of human brain.Neuroreport 13: 2059–2063, 2002.PubMedCrossRefGoogle Scholar
  88. 87.
    Sampath J, Adachi M, Hatse S, Naesens L, Balzarini J, Flatley RM, et al. Role of MRP4 and MRP5 in biology and chemotherapy.AAPS PharmSci 4: E14, 2002.PubMedCrossRefGoogle Scholar
  89. 88.
    Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2).Oncogene 22: 7340–7358, 2003.PubMedCrossRefGoogle Scholar
  90. 89.
    Haimeur A, Conseil G, Deeley RG, Cole SP. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation.Curr Drug Metab 5: 21–53, 2004.PubMedCrossRefGoogle Scholar
  91. 90.
    Suzuki H, Sugiyama Y. Excretion of GSSG and glutathione conjugates mediated by MRP1 and cMOAT/MRP2.Semin Liver Dis 18: 359–376, 1998.PubMedCrossRefGoogle Scholar
  92. 91.
    Muller M, Jansen PL. Molecular aspects of hepatobiliary transport.Am J Physiol (Lond) 272: G1285-G1303, 1997.Google Scholar
  93. 92.
    Russel FG, Masereeuw R, van Aubel RA. Molecular aspects of renal anionic drug transport.Annu Rev Physiol 64: 563–594, 2002.PubMedCrossRefGoogle Scholar
  94. 93.
    Mizuno N, Suzuki M, Kusuhara H, Suzuki H, Takeuchi K, Niwa T, et al. Impaired renal excretion of 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040) sulfate in breast cancer resistance protein (Bcrp1/Abcg2) knockout mice.Drug Metab Dispos 32: 898–901, 2004.PubMedGoogle Scholar
  95. 94.
    Sasaki M, Suzuki H, Ito K, Abe T, Sugiyama Y. Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and multidrug resistance-associated protein 2 (MRP2/ABCC2).J Biol Chem 277: 6497–6503, 2002.PubMedCrossRefGoogle Scholar
  96. 95.
    Cui Y, Konig J, Keppler D. Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2.Mol Pharmacol 60: 934–943, 2001.PubMedGoogle Scholar
  97. 96.
    Mita S, Suzuki H, Akita H, Stieger B, Meier PJ, Hofmann A, et al. Vectorial transport of bile salts across MDCK cells expressing both rat Na+/taurocholate cotransporting polypeptide and rat bile salt export pump.Am J Physiol (Lond) Gastrointest Liver Physiol 5 Aug 2004.Google Scholar
  98. 97.
    Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine.Drug Metab Dispos 27: 866–871, 1999.PubMedGoogle Scholar
  99. 98.
    Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH, et al. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan.J Natl Cancer Inst 92: 1651–1656, 2000.PubMedCrossRefGoogle Scholar
  100. 99.
    Assem M, Schuetz EG, Leggas M, Sun D, Yasuda K, Reid G, et al. Interactions between hepatic Mrp4 and Sult2a as revealed by the constitutive androstane receptor and Mrp4 knockout mice.J Biol Chem 279: 22250–22257, 2004.PubMedCrossRefGoogle Scholar
  101. 100.
    Adachi Y, Suzuki H, Sugiyama Y. Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein.Pharm Res 18: 1660–1668, 2001.PubMedCrossRefGoogle Scholar
  102. 101.
    Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo.Proc Natl Acad Sci USA 97: 3473–3478, 2000.PubMedCrossRefGoogle Scholar
  103. 102.
    Fromm MF, The influence of MDR1 polymorphisms on P-glycoprotein expression and function in humans.Adv Drug Deliv Rev 54: 1295–1310, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2005

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesUniversity of TokyoTokyoJapan

Personalised recommendations