, Volume 2, Issue 1, pp 3–14 | Cite as

The blood-brain barrier: Bottleneck in brain drug development

  • William M. PardridgeEmail author


The blood-brain barrier (BBB) is formed by the brain capillary endothelium and excludes from the brain ∼100% of large-molecule neurotherapeutics and more than 98% of all small-molecule drugs. Despite the importance of the BBB to the neurotherapeutics mission, the BBB receives insufficient attention in either academic neuroscience or industry programs. The combination of so little effort in developing solutions to the BBB problem, and the minimal BBB transport of the majority of all potential CNS drugs, leads predictably to the present situation in neurotherapeutics, which is that there are few effective treatments for the majority of CNS disorders. This situation can be reversed by an accelerated effort to develop a knowledge base in the fundamental transport properties of the BBB, and the molecular and cellular biology of the brain capillary endothelium. This provides the platform for CNS drug delivery programs, which should be developed in parallel with traditional CNS drug discovery efforts in the molecular neurosciences.

Key Words

Blood-brain barrier endothelium drug targeting biological transport neurotherapeutics 


  1. 1.
    Pardridge WM. Brain drug targeting: the future of brain drug development. Cambridge, UK: Cambridge University Press, 2001.CrossRefGoogle Scholar
  2. 2.
    Lloyd K, Homykiewicz O. Parkinson’s disease activity ofl-dopa decarboxylase in discrete brain regions.Science 170: 1212–1213, 1970.PubMedCrossRefGoogle Scholar
  3. 3.
    Zivadinov R, Zorzon M, Tommasi MA, Nasuelli D, Bemardi M, Monti-Bragadin L, et al. A longitudinal study of quality of life and side effects in patients with multiple sclerosis treated with interferon β-1a.J Neurol Sci 216: 113–118, 2003.PubMedCrossRefGoogle Scholar
  4. 4.
    Antinori A, Cingolani A, Giancola ML, Forbici F, De Luca A, Pemo CF. Clinical implications of HIV-1 drug resistance in the neurological compartment.Scand J Infect Dis Suppl [35 Suppl] 106: 41–44, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Kandanearatchi A, Williams B, Everall IP. Assessing the efficacy of highly active antiretroviral therapy in the brain.Brain Pathol 13: 104–110, 2003.PubMedCrossRefGoogle Scholar
  6. 6.
    Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases.J Comb Chem 1: 55–68, 1999.PubMedCrossRefGoogle Scholar
  7. 7.
    Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability.J Pharmacol Toxicol Methods 44: 235–249, 2000.PubMedCrossRefGoogle Scholar
  8. 8.
    Fischer H, Gottschlich R, Seelig A. Blood-brain barrier permeation molecular parameters governing passive diffusion.J Membr Biol 165: 201–211, 1998.PubMedCrossRefGoogle Scholar
  9. 9.
    Lieb WR, Stein WD. NonStokesian nature of transverse diffusion within human red cell membranes.J Membr Biol 92: 111–119, 1986.PubMedCrossRefGoogle Scholar
  10. 10.
    Trauble H. The movement of molecules across lipid membranes: a molecular theory.J Membrane Biol 4: 193–208, 1971.CrossRefGoogle Scholar
  11. 11.
    Pardridge WM, Mietus LJ. Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone.J Clin Invest 64: 145–154, 1979.PubMedCrossRefGoogle Scholar
  12. 12.
    Lundquist S, Renftel M. The use of in vitro cell culture models for mechanistic studies and as permeability screens for the blood-brain barrier in the pharmaceutical industry-background and current status in the drug discovery process.Vasc Pharmacol 38: 355–364, 2002.CrossRefGoogle Scholar
  13. 13.
    Fung LK, Shin M, Tyler B, Brem H, Saltzman WM. Chemotherapeutic drugs released from polymers distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain.Pharm Res 13: 671–682, 1996.PubMedCrossRefGoogle Scholar
  14. 14.
    Blasberg RG, Patlak C, Fenstermacher JD. Intrathecal chemotherapy brain tissue profiles after ventriculocistemal perfusion.J Pharmacol Exp Ther 195: 73–83, 1975.PubMedGoogle Scholar
  15. 15.
    Krewson CE, Klarman ML, Saltzman WM. Distribution of nerve growth factor following direct delivery to brain interstitium.Brain Res 680: 196–206, 1995.PubMedCrossRefGoogle Scholar
  16. 16.
    Yan Q, Matheson C, Sun J, Radeke MJ, Feinstein SC, Miller JA. Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with trk receptor expression.Exp Neurol 127: 23–36, 1994.PubMedCrossRefGoogle Scholar
  17. 17.
    Christy NP, Fishman RA. Studies of the blood-cerebrospinal fluid barrier to cortisol in the dog.J Clin Invest 40: 1997–2006, 1961.PubMedCrossRefGoogle Scholar
  18. 18.
    Billiau A, Heremans H, Ververken D, van Damme J, Carton H, de Somer P. Tissue distribution of human interferons after exogenous administration in rabbits, monkeys, and mice.Arch Virol 68: 19–25, 1981.PubMedCrossRefGoogle Scholar
  19. 19.
    Voges J, Reszka R, Gossmann A, Dittmar C, Richter R, Garlip G, et al. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma.Ann Neurol 54: 479–487, 2003.PubMedCrossRefGoogle Scholar
  20. 20.
    Ai Y, Markesbery W, Zhang Z, Grondin R, Elseberry D, Gerhardt GA, et al. Intraputamenal infusion of GDNF in aged rhesus monkeys distribution and dopaminergic effects.J Comp Neurol 461: 250–261, 2003.PubMedCrossRefGoogle Scholar
  21. 21.
    Zunkeler B, Carson RE, Olson J, Blasberg RG, DeVroom H, Lutz RJ, et al. Quantification and pharmacokinetics of blood-brain barrier disruption in humans.J Neurosurg 85: 1056–1065, 1996.PubMedCrossRefGoogle Scholar
  22. 22.
    Lossinsky AS, Vorbrodt AW, Wisniewski HM. Scanning and transmission electron microscopic studies of microvascular pathology in the osmotically impaired blood-brain barrier.J Neurocytol 24: 795–806, 1995.PubMedCrossRefGoogle Scholar
  23. 23.
    Salahuddin TS, Johansson BB, Kalimo H, Olsson Y. Structural changes in the rat brain after carotid infusions of hyperosmolar solutions.Acta Neuropathol 77:5–13Google Scholar
  24. 24.
    Neuwelt EA, Rapoport SI. Modification of the blood-brain barrier in the chemotherapy of malignant brain tumors.Fed Proc 43: 214–219, 1984.PubMedGoogle Scholar
  25. 25.
    Doolittle ND, Petrillo A, Bell S, Cummings P, Eriksen S. Blood-brain barrier disruption for the treatment of malignant brain tumors The National Program.J Neurosci Nurs 30: 81–90, 1998.PubMedCrossRefGoogle Scholar
  26. 26.
    Nadal A, Fuentes E, Pastor J, McNaughton PA. Plasma albumin is a potent trigger of calcium signals and DNA synthesis in astrocytes.Proc Natl Acad Sci USA 92: 1426–1430, 1995.PubMedCrossRefGoogle Scholar
  27. 27.
    Hanig JP, Morrison JM Jr, Krop S. Ethanol enhancement of blood-brain barrier permeability to catecholamines in chicks.Eur J Pharmacol 18: 79–82, 1972.PubMedCrossRefGoogle Scholar
  28. 28.
    Broadwell RD, Salcman M, Kaplan RS. Morphologic effect of dimethyl sulfoxide on the blood-brain barrier.Science 217: 164–166, 1982.PubMedCrossRefGoogle Scholar
  29. 29.
    Saija A, Princi P, Trombetta D, Lanza M, De Pasquale A. Changes in the permeability of the blood-brain barrier following sodium dodecyl sulphate administration in the rat.Exp Brain Res 115: 546–551, 1997.PubMedCrossRefGoogle Scholar
  30. 30.
    Azmin MN, Stuart JF, Florence AT. The distribution and elimination of methotrexate in mouse blood and brain after concurrent administration of polysorbate 80.Cancer Chemother Pharmacol 14: 238–242, 1985.PubMedCrossRefGoogle Scholar
  31. 31.
    Sakane T, Tanaka C, Yamamoto A, Hashida M, Sezaki H, Ueda H, et al. The effect of polysorbate 80 on brain uptake and analgesic effect of D-kyotorphin.Int J Pharm 57: 77–83, 1989.CrossRefGoogle Scholar
  32. 32.
    Rabchevsky AG, Degos JD, Dreyfus PA. Peripheral injections of Freund’s adjuvant in mice provoke leakage of serum proteins through the blood-brain barrier without inducing reactive gliosis.Brain Res 832: 84–96, 1999.PubMedCrossRefGoogle Scholar
  33. 33.
    Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse.Nature 400: 173–177, 1999.PubMedCrossRefGoogle Scholar
  34. 34.
    Kristensson K, Olsson Y. Uptake of exogenous proteins in mouse olfactory cells.Acta Neuropathol (Berl) 19: 145–154, 1971.CrossRefGoogle Scholar
  35. 35.
    Merkus P, Guchelaar HJ, Bosch DA, Merkus FW. Direct access of drugs to the human brain after intranasal drug administration?Neurology 60: 1669–1671, 2003.PubMedGoogle Scholar
  36. 36.
    Bom J, Lange T, Kem W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides a transnasal approach to the human brain.Nat Neurosci 5: 514–516, 2002.CrossRefGoogle Scholar
  37. 37.
    Thome RG, Emory CR, Ala TA, Frey WH 2nd. Quantitative analysis of the olfactory pathway for drug delivery to the brain.Brain Res 692: 278–282, 1995.CrossRefGoogle Scholar
  38. 38.
    Bar T. The vascular system of the cerebral cortex.Adv Anat Embryol Cell Biol 59: I-VI, 1–62, 1980.PubMedGoogle Scholar
  39. 39.
    Jaeger CB, Blight AR. Spinal cord compression injury in guinea pigs structural changes of endothelium and its perivascular cell associations after blood-brain barrier breakdown and repair.Exp Neurol 144: 381–399, 1997.PubMedCrossRefGoogle Scholar
  40. 40.
    Pardridge WM, Oldendorf WH. Kinetics of blood-brain barrier transport of hexoses.Biochim Biophys Acta 382: 377–392, 1975.PubMedCrossRefGoogle Scholar
  41. 41.
    Enerson BE, Drewes LR. Molecular features, regulation, and function of monocarboxylate transporters implications for drug delivery.J Pharm Sci 92: 1531–1544, 2003.PubMedCrossRefGoogle Scholar
  42. 42.
    Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM. Selective expression of the large neutral amino acid transporter at the blood-brain barrier.Proc Natl Acad Sci USA 96: 12079–12084, 1999.PubMedCrossRefGoogle Scholar
  43. 43.
    Smith QR, Stoll J. Blood-brain barrier amino acid transport. Introduction to the blood-brain barrier: methodology and pathology. Cambridge, UK: Cambridge University Press, 1998.Google Scholar
  44. 44.
    Comford EM, Braun LD, Oldendorf WH. Carrier mediated blood-brain barrier transport of choline and certain choline analogs.J Neurochem 30: 299–308, 1978.CrossRefGoogle Scholar
  45. 45.
    Allen DD, Smith QR. Characterization of the blood-brain barrier choline transporter using thein situ rat brain perfusion technique.J Neurochem 76: 1032–1041, 2001.PubMedCrossRefGoogle Scholar
  46. 46.
    Comford EM, Oldendorf WH. Independent blood-brain barrier transport systems for nucleic acid precursors.Biochim Biophys Acta 394: 211–219, 1975.CrossRefGoogle Scholar
  47. 47.
    Li JY, Boado RJ, Pardridge WM. Cloned blood-brain barrier adenosine transporter is identical to the rat concentrative Na+ nucleoside cotransporter CNT2.J Cereb Blood Flow Metab 21: 929–936, 2001.PubMedCrossRefGoogle Scholar
  48. 48.
    Pardridge WM, Yoshikawa T, Kang Y-L, Miller LP. Blood-brain barrier transport and brain metabolism of adenosine and adenosine analogs.J Pharmacol Exp Ther 268: 14–18, 1994.PubMedGoogle Scholar
  49. 49.
    Zhang Y, Pardridge WM. Rapid transferrin efflux from brain to blood across the blood-brain barrier.J Neurochem 76: 1597–1600, 2001.PubMedCrossRefGoogle Scholar
  50. 50.
    Skarlatos S, Yoshikawa T, Pardridge WM. Transport of [125I]transferrin through the rat blood-brain barrier.Brain Res 683: 164–171, 1995.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang Y, Pardridge WM. Mediated efflux of IgG molecules from brain to blood across the blood-brain barrier.J Neuroimmunol 114: 168–172, 2001.PubMedCrossRefGoogle Scholar
  52. 52.
    Schlachetzki F, Zhu C, Pardridge WM. Expression of the neonatal Fc receptor (FcRn) at the blood-brain barrier.J Neurochem 81: 203–206, 2002.PubMedCrossRefGoogle Scholar
  53. 53.
    Triguero D, Buciak J, Pardridge WM. Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins.J Neurochem 54: 1882–1888, 1990.PubMedCrossRefGoogle Scholar
  54. 54.
    Wu D, Pardridge WM. Central nervous system pharmacologie effect in conscious rats after intravenous injection of a biotinylated vasoactive intestinal peptide analog coupled to a blood-brain barrier drug delivery system.J Pharmacol Exp Ther 279: 77–83, 1996.PubMedGoogle Scholar
  55. 55.
    Wu D, Pardridge WM. Neuroprotection with noninvasive neurotrophin delivery to the brain.Proc Natl Acad Sci USA 96: 254–259, 1999.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang Y, Pardridge WM. Conjugation of brain-derived neurotrophic factor to a blood-brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin.Brain Res 889: 49–56, 2001.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang Y, Pardridge WM. Neuroprotection in transient focal brain ischemia after delayed intravenous administration of brain-derived neurotrophic factor conjugated to a blood-brain barrier drug targeting system.Stroke 32: 1378–1384, 2001.PubMedGoogle Scholar
  58. 58.
    Song BW, Vinters HV, Wu D, Pardridge WM. Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector.J Pharmacol Exp Ther 301: 605–610, 2002.PubMedCrossRefGoogle Scholar
  59. 59.
    Kurihara A, Pardridge WM. Imaging brain tumors by targeting peptide radiopharmaceuticals through the blood-brain barrier.Cancer Res 59: 6159–6163, 1999.PubMedGoogle Scholar
  60. 60.
    Lee HJ, Zhang Y, Zhu C, Duff K, Pardridge WM. Imaging brain amyloid of Alzheimer disease in vivo in transgenic mice with an Aβ peptide radiopharmaceutical.J Cereb Blood Flow Metab 22: 223–231, 2002.PubMedCrossRefGoogle Scholar
  61. 61.
    Lee HJ, Boado RJ, Braasch DA, Corey DR, Pardridge WM. Imaging gene expression in the brain in vivo in a transgenic mouse model of Huntington’s disease with an antisense radiopharmaceutical and drug-targeting technology.J Nucl Med 43: 948–956, 2002.PubMedGoogle Scholar
  62. 62.
    Suzuki T, Wu D, Schlachetzki F, Li JY, Boado, RJ, Pardridge WM. Imaging endogenous gene expression in brain cancer in vivo with111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology.J Nucl Med 10: 1766–1775, 2004.Google Scholar
  63. 63.
    Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes.Proc Natl Acad Sci USA 93: 14164–14169, 1996.PubMedCrossRefGoogle Scholar
  64. 64.
    Olivier JC, Huertas R, Lee HJ, Calon F, Pardridge WM. Synthesis of pegylated immunonanoparticles.Pharm Res 19: 1137–1143, 2002.PubMedCrossRefGoogle Scholar
  65. 65.
    Shi N, Zhang Y, Zhu C, Boado RJ, Pardridge WM. Brain-specific expression of an exogenous gene after i.v. administration.Proc Natl Acad Sci USA 98: 12754–12759, 2001.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang Y, Schlachetzki F, Zhang YF, Boado RJ, Pardridge WM. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism with intravenous nonviral gene therapy and a brain-specific promoter.Hum Gene Ther 15: 339–350, 2004.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang Y, Zhu C, Pardridge WM. Antisense gene therapy of brain cancer with an artificial virus gene delivery system.Mol Ther 6: 67–72, 2002.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang Y, Schlachetzki F, Pardridge WM. Global non-viral gene transfer to the primate brain following intravenous administration.Mol Ther 7: 11–18, 2003.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang Y, Boado RJ, Pardridge WM. In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats.J Gene Med 5: 1039–1045, 2003.PubMedCrossRefGoogle Scholar
  70. 70.
    Zhang Y, Bryant J, Zhang YF, Charles A, Boado RJ, Pardridge WM. Intravenous RNAi gene therapy targeting the human EGF receptor prolongs survival in intra-cranial brain cancer.Clin Cancer Res 10:3667–3677.Google Scholar
  71. 71.
    Pardridge WM. Why is the global CNS pharmaceutical market so under-penetrated?Drug Discov Today 7: 5–7, 2002.PubMedCrossRefGoogle Scholar
  72. 72.
    Matsukado K, Sugita M, Black KL. Intracarotid low dose brady-kinin infusion selectively increases tumor permeability through activation of bradykinin B2 receptors in malignant gliomas.Brain Res 792: 10–15, 1998.PubMedCrossRefGoogle Scholar
  73. 73.
    Spigelman MK, Zappulla RA, Goldberg JD, Goldsmith SJ, Marotta D, Malis LI, et al. Effect of intracarotid etoposide on opening the blood-brain barrier.Cancer Drug Deliv 1: 207–211, 1984.PubMedCrossRefGoogle Scholar
  74. 74.
    Comford EM, Young D, Paxton JW, Finlay GJ, Wilson WR, Pardridge WM. Melphalan penetration of the blood-brain barrier via the neutral amino acid transporter in tumor-bearing brain.Cancer Res 52: 138–143, 1992.Google Scholar
  75. 75.
    Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits.Radiology 220: 640–646, 2001.PubMedCrossRefGoogle Scholar
  76. 76.
    Bolton SJ, Anthony DC, Perry VH. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo.Neuroscience 86: 1245–1257, 1998.PubMedCrossRefGoogle Scholar
  77. 77.
    Anthony D, Dempster R, Fearn S, Clements J, Wells G, Perry VH, et al. CXC chemokines generate age-related increases in neutrophil-mediated brain inflammation and blood-brain barrier breakdown.Curr Biol 8: 923–926, 1998.PubMedCrossRefGoogle Scholar
  78. 78.
    Oldendorf WH, Stoller BE, Tishler TA, Williams JL, Oldendorf SZ. Transient blood-brain barrier passage of polar compounds at low pH.Am J Physiol (Lond) 267: H2229-H2236, 1994.Google Scholar
  79. 79.
    Oztas B, Kucuk M. Intracarotid hypothermie saline infusion a new method for reversible blood-brain barrier disruption in anesthetized rats.Neurosci Lett 190: 203–206, 1995.PubMedCrossRefGoogle Scholar
  80. 80.
    Sztriha L, Betz AL. Oleic acid reversibly opens the blood-brain barrier.Brain Res 550: 257–262, 1991.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2005

Authors and Affiliations

  1. 1.Department of MedicineUCLALos Angeles

Personalised recommendations