, Volume 2, Issue 1, pp 108–119 | Cite as

Drug transport to brain with targeted nanoparticles

  • Jean-Christophe OlivierEmail author


Nanoparticle drug carriers consist of solid biodegradable particles in size ranging from 10 to 1000 nm (50–300 nm generally). They cannot freely diffuse through the blood-brain barrier (BBB) and require receptor-mediated transport through brain capillary endothelium to deliver their content into the brain parenchyma. Polysorbate 80-coated polybutylcyano-acrylate nanoparticles can deliver drugs to the brain by a still debated mechanism. Despite interesting results these nanoparticles have limitations, discussed in this review, that may preclude, or at least limit, their potential clinical applications. Long-circulating nanoparticles made of methoxypoly(ethylene glycol)-polylactide or poly(lactide-co-glycolide) (mPEG-PLA/PLGA) have a good safety profiles and provide drug-sustained release. The availability of functionalized PEG-PLA permits to prepare target-specific nanoparticles by conjugation of cell surface ligand. Using peptidomimetic antibodies to BBB transcytosis receptor, brain-targeted pegylated immunonanoparticles can now be synthesized that should make possible the delivery of entrapped actives into the brain parenchyma without inducing BBB permeability alteration. This review presents their general properties (structure, loading capacity, pharmacokinetics) and currently available methods for immunonanoparticle preparation.

Key Words

Nanoparticle immunonanoparticle brain targeting blood brain barrier transcytosis PEG 


  1. 1.
    Soppimath KS, Aminabhavi TM, Kulkami AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices.J Control Release 70: 1–20, 2001.PubMedGoogle Scholar
  2. 2.
    Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery.Adv Drug Deliv Rev 56: 1257–1272, 2004.PubMedGoogle Scholar
  3. 3.
    Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres.Adv Drug Deliv Rev 16: 215–233, 1995.Google Scholar
  4. 4.
    Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier.Drug Dev Ind Pharm 28: 1–13, 2002.PubMedGoogle Scholar
  5. 5.
    Pardridge WM. Brain drug targeting: the future of brain drug development. Cambridge, UK: Cambridge University Press, Inc., 2001.Google Scholar
  6. 6.
    Alyautdin R, Gothier D, Petrov V, Kharkevich D, Kreuter J. Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles.Eur J Pharm Biopharm 41: 44–48, 1995.Google Scholar
  7. 7.
    Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles).Brain Res 674: 171–174, 1995.PubMedGoogle Scholar
  8. 8.
    Couvreur P, Tulkens P, Roland M, Trouet A, Speiser P. Nanocapsules: a new type of lysosomotropic carrier.FEBS Lett 84: 323–326, 1977.PubMedGoogle Scholar
  9. 9.
    Vauthier C, Dubemet C, Fattal E, Pinto-Alphandary H, Couvreur P. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications.Adv Drug Deliv Rev 55: 519–548, 2003.PubMedGoogle Scholar
  10. 10.
    Guise V, Drouin JY, Benoit J, Mahuteau J, Dumont P, Couvreur P. Vidarabine-loaded nanoparticles: a physicochemical study.Pharm Res 7: 736–741, 1990.PubMedGoogle Scholar
  11. 11.
    Olivier JC, Fenart L, Chauvet R, Pariat C, Cecchelli R, Couet W. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity.Pharm Res 16: 1836–1842, 1999.PubMedGoogle Scholar
  12. 12.
    Olivier JC, Vauthier C, Taverna M, Puisieux F, Ferrier D, Couvreur P. Stability of orosomucoid-coated polyisobutylcyanoacrylate nanoparticles in the presence of serum.J Control Release 40: 157–168, 1996.Google Scholar
  13. 13.
    Muller RH, Lherm C, Herbort J, Couvreur P. In vitro model for the degradation of alkylcyanoacrylate nanoparticles.Biomaterials 11: 590–595, 1990.PubMedGoogle Scholar
  14. 14.
    Müller RH, Lherm C, Herbort J, Blunk T, Couvreur P. Alkylcyanoacrylate drug carriers: I. Physicochemical characterization of nanoparticles with different alkyl chain length.Int J Pharm 84: 1–11, 1992.Google Scholar
  15. 15.
    Lherm C, Müller RH, Puisieux F, Couvreur P. Alkylcyanoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length.Int J Pharm 84: 13–22, 1992.Google Scholar
  16. 16.
    Kante B, Couvreur P, Dubois-Krack G, De Meester C, Guiot P, Roland M, et al. Toxicity of polyalkylcyanoacrylate nanoparticles I: free nanoparticles.J Pharm Sci 71: 786–790, 1982.PubMedGoogle Scholar
  17. 17.
    Kattan J, Droz JP, Couvreur P, Marino JP, Boutan-Laroze A, Rougier P, et al. Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles.Invest New Drugs 10: 191–199, 1992.PubMedGoogle Scholar
  18. 18.
    Grislain L, Couvreur P, Lenaerts V, Roland M, Deprez-Decampeneere D, Speiser P. Pharmacokinetics and distribution of a biodegradable drug-carrier.Int J Pharm 15: 335–345, 1983.Google Scholar
  19. 19.
    Douglas SJ, Davis SS, Ilium L. Biodistribution of poly(butyl 2-cyanoacrylate) nanoparticles in rabbits.Int J Pharm 34: 145–152, 1986.Google Scholar
  20. 20.
    Waser PG, Müller U, Kreuter J, Berger S, Münz K, Kaiser E, et al. Localization of colloidal particles (liposomes, hexylcyanoacrylate nanoparticles and albumin nanoparticles) by histology and autoradiography in mice.Int J Pharm 39: 213–227, 1987.Google Scholar
  21. 21.
    Simeonova M, Ivanova T, Raikova E, Georgieva M, Raikov Z. Tissue distribution of polybutylcyanoacrylate nanoparticles carrying spin-labelled nitrosourea.Int J Pharm 43: 267–271, 1988.Google Scholar
  22. 22.
    Verdun C, Brasseur F, Vranckx H, Couvreur P, Roland M. Tissue distribution of doxorubicin associated with polyisohexylcyanoacrylate nanoparticles.Cancer Chemother Pharmacol 26: 13–18, 1990.PubMedGoogle Scholar
  23. 23.
    Lobenberg R, Araujo L, von Bliesen H, Rodgers E, Kreuter J. Body distribution of azidothymidine bound to hexyl-cyanoacrylate nanoparticles after i.v. injection to rats.J Control Release 50: 21–30, 1998.PubMedGoogle Scholar
  24. 24.
    Peracchia MT, Fattal E, Desmaele D, Besnard M, Noel JP, Gomis JM, et al. Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting.J Control Release 60: 121–128, 1999.PubMedGoogle Scholar
  25. 25.
    Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles.Pharm Res 16: 1564–1569, 1999.PubMedGoogle Scholar
  26. 26.
    Steiniger SC, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smimova ZS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles.Int J Cancer 109: 759–767, 2004.PubMedGoogle Scholar
  27. 27.
    Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles.Pharm Res 14: 325–328, 1997.PubMedGoogle Scholar
  28. 28.
    Alyautdin RN, Tezikov EB, Ramge P, Kharkevich DA, Begley DJ, Kreuter J. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate study.J Microencapsul 15: 67–74, 1998.PubMedGoogle Scholar
  29. 29.
    Kreuter J. Nanoparticulate systems for brain delivery of drugs.Adv Drug Deliv Rev 47: 65–81, 2001.PubMedGoogle Scholar
  30. 30.
    Kreuter J, Petrov VE, Kharkevich DA, Alyautdin RN. Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood-brain barrier using surfactant-coated nanoparticles.J Control Release 49: 81–87, 1997.Google Scholar
  31. 31.
    Allemann E, Gravel P, Leroux JC, Balant L, Gurny R. Kinetics of blood component adsorption on poly(D,L-lactic acid) nanoparticles: evidence of complement C3 component involvement.J Biomed Mater Res 37: 229–234, 1997.PubMedGoogle Scholar
  32. 32.
    Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption.Colloids Surfaces B: Biointerfaces 18: 301–313, 2000.Google Scholar
  33. 33.
    Lode J, Fichtner I, Kreuter J, Berndt A, Diederichs JE, Reszka R. Influence of surface-modifying surfactants on the pharmacokinetic behavior of 14C-poly (methylmethacrylate) nanoparticles in experimental tumor models.Pharm Res 18: 1613–1619, 2001.PubMedGoogle Scholar
  34. 34.
    Darius J, Meyer FP, Sabel BA, Schroeder U. Influence of nanoparticles on the brain-to-serum distribution and the metabolism of valproic acid in mice.J Pharm Pharmacol 52: 1043–1047, 2000.PubMedGoogle Scholar
  35. 35.
    Schroeder U, Schroeder H, Sabel BA. Body distribution of 3H-labelled dalargin bound to poly(butyl cyanoacrylate) nanoparticles after i.v. injections to mice.Life Sci 66: 495–502, 2000.PubMedGoogle Scholar
  36. 36.
    Calvo P, Gouritin B, Chacun H, Desmaele D, D’Angelo J, Noel JP, Georgin D, Fattal E, Andreux JP, Couvreur P. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery.Pharm Res 18: 1157–1166, 2001.PubMedGoogle Scholar
  37. 37.
    Azmin MN, Stuart JF, Florence AT. The distribution and elimination of methotrexate in mouse blood and brain after concurrent administration of polysorbate 80.Cancer Chemother Pharmacol 14: 238–242, 1985.PubMedGoogle Scholar
  38. 38.
    Alyaudtin RN, Reichel A, Lobenberg R, Ramge P, Kreuter J, Begley DJ. Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro.J Drug Target 9: 209–221, 2001.PubMedGoogle Scholar
  39. 39.
    Friese A, Seiller E, Quack G, Lorenz B, Kreuter J. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system.Eur J Pharm Biopharm 49: 103–109, 2000.PubMedGoogle Scholar
  40. 40.
    Vert M, Schwach G, Engel R, Coudane J. Something new in the field of PLA/GA bioresorbable polymers?J Control Release 53: 85–92, 1998.PubMedGoogle Scholar
  41. 41.
    Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres.Adv Drug Deliv Rev 28: 5–24, 1997.PubMedGoogle Scholar
  42. 42.
    Ueda H, Tabata Y. Polyhydroxyalkanonate derivatives in current clinical applications and trials.Adv Drug Deliv Rev 55: 501–518, 2003.PubMedGoogle Scholar
  43. 43.
    Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids.J Biomed Mater Res 48: 342–353, 1999.PubMedGoogle Scholar
  44. 44.
    Bazile DV, Ropert C, Huve P, Verrecchia T, Marlard M, Frydman A, et al. Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats.Biomaterials 13: 1093–1102, 1992.PubMedGoogle Scholar
  45. 45.
    von Burkersroda F, Gref R, Gopferich A. Erosion of biodegradable block copolymers made of poly(D,L-lactic acid) and poly-(ethylene glycol).Biomaterials 18: 1599–1607, 1997.Google Scholar
  46. 46.
    Quellec P, Gref R, Perrin L, Dellacherie E, Sommer F, Verbavatz JM, Alonso MJ. Protein encapsulation within polyethylene glycol-coated nanospheres. I. Physicochemical characterization.J Biomed Mater Res 42: 45–54, 1998.PubMedGoogle Scholar
  47. 47.
    Vittaz M, Bazile D, Spenlehauer G, Verrecchia T, Veillard M, Puisieux F, et al. Effect of PEO surface density on long-circulating PLA-PEO nanoparticles which are very low complement activators.Biomaterials 17: 1575–1581, 1996.PubMedGoogle Scholar
  48. 48.
    Quellec P, Gref R, Dellacherie E, Sommer F, Tran MD, Alonso MJ. Rotein encapsulation within polyethylene glycol-coated nanospheres. II. Controlled release properties.J Biomed Mater Res 47: 388–395, 1999.PubMedGoogle Scholar
  49. 49.
    Zambaux MF, Bonneaux F, Gref R, Dellacherie E, Vigneron C. Protein C-loaded monomethoxypoly (ethylene oxide)-poly(lactic acid) nanoparticles.Int J Pharm 212: 1–9, 2001.PubMedGoogle Scholar
  50. 50.
    Working PK, Newman MS, Johnson J, Comacoff JB. Safety of poly(ethylene glycol) and poly(ethylene glycol) derivatives. In: Poly(ethylene glycol): chemistry and biological applications (Harris JM, Zalipsky S, eds.) ACS Symposium Series, No 680, pp 45–57. Washington, DC: American Chemical Society, 1997.Google Scholar
  51. 51.
    Lemoine D, Francois C, Kedzierewicz F, Preat V, Hoffman M, Maincent P. Stability study of nanoparticles of poly(epsilon-caprolactone), poly(D,L-lactide) and poly(D,L-lactide-co-glycolide).Biomaterials 17: 2191–2197, 1996.PubMedGoogle Scholar
  52. 52.
    Emerich DF, Tracy MA, Ward KL, Figueiredo M, Qian R, Henschel C, et al. Biocompatibility of poly (DL-lactide-co-glycolide) microspheres implanted into the brain.Cell Transplant 8: 47–58, 1999.PubMedGoogle Scholar
  53. 53.
    Menei P, Daniel V, Montero-Menei C, Brouillard M, Pouplard-Barthelaix A, Benoit JP. Biodegradation and brain tissue reaction to poly(D,L-lactide-co-glycolide) microspheres.Biomaterials 14: 470–478, 1993.PubMedGoogle Scholar
  54. 54.
    Plard JP, Didier B. Comparison of the safety profiles of PLA50 and Me.PEG-PLA50 nanoparticles after single dose intravenous administration to rat.Colloids Surfaces B: Biointerfaces 16: 173–183, 1999.Google Scholar
  55. 55.
    Lee J, Cho EC, Cho K. Incorporation and release behavior of hydrophobic drug in functionalized poly(D,L-lactide)-block-poly(ethylene oxide) micelles.J Control Release 94: 323–335, 2004.PubMedGoogle Scholar
  56. 56.
    Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, Labrude P, Vigneron C. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method.J Control Release 50: 31–40, 1998.PubMedGoogle Scholar
  57. 57.
    Chognot D, Six JL, Leonard M, Bonneaux F, Vigneron C, Dellacherie E. Physicochemical evaluation of PLA nanoparticles stabilized by water-soluble MPEO-PLA block copolymers.J Colloid Interface Sci 268: 441–447, 2003.PubMedGoogle Scholar
  58. 58.
    Riley T, Govender T, Stolnik S, Xiong CD, Garnett MC, Ilium L, et al. Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles.Colloids Surfaces B: Biointerfaces 16: 147–159, 1999.Google Scholar
  59. 59.
    Riley T, Stolnik S, Heald CR, Xiong CD, Gamett MC, Ilium L, et al. Physicochemical evaluation of nanoparticles assembled from poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) block copolymers as drug delivery vehicles.Langmuir 17: 3168–3174, 2001.Google Scholar
  60. 60.
    Niwa T, Takeuchi H, Hino T, Nohara M, Kawashima Y. Biodegradable submicron carriers for peptide drugs: preparation of -lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate by a novel emulsion-phase separation method in an oil system.Int J Pharm 121: 45–54, 1995.Google Scholar
  61. 61.
    Horisawa E, Hirota T, Kawazoe S, Yamada J, Yamamoto H, Takeuchi H, Kawashima Y. Prolonged anti-inflammatory action of DL-lactide/glycolide copolymer nanospheres containing beta-methasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit.Pharm Res 19: 403–410, 2002.PubMedGoogle Scholar
  62. 62.
    Konan YN, Gumy R, Allemann E. Reparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles.Int J Pharm 233: 239–252, 2002.PubMedGoogle Scholar
  63. 63.
    De Jaeghere F, Allemann E, Leroux JC, Stevels W, Feijen J, Doelker, E, et al. Formulation and lyoprotection of poly(lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake.Pharm Res 16: 859–866, 1999.PubMedGoogle Scholar
  64. 64.
    Scholz C, Iijima M, Nagasaki Y, Kataoka K. A novel reactive polymeric micelle with aldehyde groups on its surface.Macromolecules 28: 7295–7297, 1995.Google Scholar
  65. 65.
    Hagan SA, Coombes AGA, Gamett MC, Dunn SE, Davies MC, Ilium L, et al. Polylactide-poly(ethylene glycol) copolymers as drug delivery systems. 1. Characterization of water dispersible micelle-forming systems.Langmuir 12: 2153–2161, 1996.Google Scholar
  66. 66.
    Stolnik S, Heald CR, Neal J, Garnett MC, Davis SS, Ilium L, et al. Polylactide-poly(ethylene glycol) micellar-like particles as potential drug carriers: production, colloidal properties and biological performance.J Drug Target 9: 361–378, 2001.PubMedGoogle Scholar
  67. 67.
    Heald CR, Stolnik S, Kujawinski KS, De Matteis C, Gamett MC, Ilium L. Poly(lactic acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles: NMR studies of the central solidlike PLA core and the liquid PEG corona.Langmuir 18: 3669–3675, 2002.Google Scholar
  68. 68.
    Gref R, Babak B, Bouillot P, Lukina I, Bodorev M, Dellacherie E. Interfacial and emulsion stabilising properties of amphiphilic water-soluble poly(ethylene glycol)-poly(lactic acid) copolymers for the fabrication of biocompatible nanoparticles.Colloids Surfaces A 143: 413–420, 1998.Google Scholar
  69. 69.
    Gbadamosi JK, Hunter AC, Moghimi SM. PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance.FEBS Lett 532: 338–344, 2002.PubMedGoogle Scholar
  70. 70.
    Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties.Prog Lipid Res 42: 463–478, 2003.PubMedGoogle Scholar
  71. 71.
    Heald CR, Stolnik S, De Matteis C, Gamett MC, Ilium L, Davis SS, et al. Characterisation of poly(lactic acid):poly(ethyleneoxide) (PLA:PEG) nanoparticles using the self-consistent theory modelling approach.Colloids Surfaces A 212: 57–64, 2003.Google Scholar
  72. 72.
    Stolnik S, Dunn SE, Gamett MC, Davies MC, Coombes AG, Taylor DC, et al. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers.Pharm Res 11: 1800–1808, 1994.PubMedGoogle Scholar
  73. 73.
    Verrecchia T, Spenlehauer G, Bazile DV, Murry-Brelier A, Archimbaud Y, Veillard M. Non-stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers.J Control Release 36: 49–61, 1995.Google Scholar
  74. 74.
    Le Ray AM, Vert M, Gautier JC, Benoît JP. Fate of [14C]poly(-lactide-co-glycolide) nanoparticles after intravenous and oral administration to mice.Int J Pharm 106: 201–211, 1994.Google Scholar
  75. 75.
    Li Y, Pei Y, Zhang X, Gu Z, Zhou Z, Yuan W, et al. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats.J Control Release 71: 203–211, 2001.PubMedGoogle Scholar
  76. 76.
    Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice.Pharmacol Rev 53: 283–318, 2001.PubMedGoogle Scholar
  77. 77.
    Sahli H, Tapon-Bretaudiere J, Fischer AM, Sternberg C, Spenlehauer G, Verrecchia T, et al. Interactions of poly(lactic acid) and poly(lactic acid-co-ethylene oxide) nanoparticles with the plasma factors of the coagulation system.Biomaterials 18: 281–288, 1997.PubMedGoogle Scholar
  78. 78.
    Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system.J Pharm Sci 84: 493–498, 1995.PubMedGoogle Scholar
  79. 79.
    Zambaux MF, Faivre-Fiorina B, Bonneau F, Marchai S, Merlin JL, Dellacherie E, et al. Involvement of neutrophilic granulocytes in the uptake of biodegradable non-stealth and stealth nanoparticles in guinea pig.Biomaterials 21: 975–980, 2000.PubMedGoogle Scholar
  80. 80.
    Mosqueira VC, Legrand P, Gulik A, Bourdon O, Gref R, Labarre D, et al. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules.Biomaterials 22: 2967–2979, 2001.PubMedGoogle Scholar
  81. 81.
    Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres.Science 263: 1600–1603, 1994.PubMedGoogle Scholar
  82. 82.
    Novakova K, Laznicek M, Rypacek F, Machova L. Pharmacokinetics and distribution125 I-PLA-b-PEO block copolymers in rats.Pharm Dev Technol 8: 153–161, 2003.PubMedGoogle Scholar
  83. 83.
    Moghimi SM. Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers.Biochim Biophys Acta 1590: 131–139, 2002.PubMedGoogle Scholar
  84. 84.
    Allemann E, Leroux JC, Gurny R, Doelker E. In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure.Pharm Res 10: 1732–1737, 1993.PubMedGoogle Scholar
  85. 85.
    Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer.J Control Release 70: 63–70, 2001.PubMedGoogle Scholar
  86. 86.
    Onishi H, Machida Y, Machida Y. Antitumor properties of irinotecan-containing nanoparticles prepared using poly(DL-lactic acid) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol).Biol Pharm Bull 26: 116–119, 2003.PubMedGoogle Scholar
  87. 87.
    Dong Y, Feng SS. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs.Biomaterials 25: 2843–2849, 2004.PubMedGoogle Scholar
  88. 88.
    Feng SS, Mu L, Win KY, Huang G. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel.Curr Med Chem 11: 413–424, 2004.PubMedGoogle Scholar
  89. 89.
    Ameller T, Marsaud V, Legrand P, Gref R, Renoir JM. Pure antiestrogen RU 58668-loaded nanospheres: morphology, cell activity and toxicity studies.Eur J Pharm Sci 21: 361–370, 2004.PubMedGoogle Scholar
  90. 90.
    Fishbein I, Chorny M, Rabinovich L, Banai S, Gati I, Golomb G. Nanoparticulate delivery system of a tyrphostin for the treatment of restenosis.J Control Release 65: 221–229, 2000.PubMedGoogle Scholar
  91. 91.
    Peracchia MT, Gref R, Minamitake Y, Domb A, Lotan N, Langer R. PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: investigation of their drug encapsulation and release characteristics.J Control Release 46: 223–231, 1997.Google Scholar
  92. 92.
    Ubrich N, Bouillot P, Pellerin P, Hoffman M, Maincent P. Preparation and characterization of propranolol hydrochloride nanoparticles: a comparative study.J Control Release 97: 291–300, 2004.PubMedGoogle Scholar
  93. 93.
    Hoffart V, Ubrich N, Simonin C, Babak V, Vigneron C, Hoffman M, et al. Low molecular weight heparin-loaded polymeric nanoparticles: formulation, characterization, and release characteristics.Drug Dev Ind Pharm 28: 1091–1099, 2002.PubMedGoogle Scholar
  94. 94.
    Ahlin P, Kristl J, Kristl A, Vrecer F. Investigation of polymeric nanoparticles as carriers of enalaprilat for oral administration.Int J Pharm 239: 113–120, 2002.PubMedGoogle Scholar
  95. 95.
    Nicoli S, Santi P, Couvreur P, Couarraze G, Colombo P, Fattal E. Design of triptorelin loaded nanospheres for transdermal ionto-phoretic administration.Int J Pharm 214: 31–35, 2001.PubMedGoogle Scholar
  96. 96.
    Govender T, Stolnik S, Gamett MC, Ilium L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug.J Control Release 57: 171–185, 1999.PubMedGoogle Scholar
  97. 97.
    Govender T, Riley T, Ehtezazi T, Gamett MC, Stolnik S, Ilium L, et al. Defining the drug incorporation properties of PLA-PEG nanoparticles.Int J Pharm 199: 95–110, 2000.PubMedGoogle Scholar
  98. 98.
    Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles.J Pharm Sci 93: 1804–1814, 2004.PubMedGoogle Scholar
  99. 99.
    Hiroaki O, Yamamoto M, Heya T, Inoue Y, Kamei S, Ogawa Y, et al. Drug delivery using biodegradable microspheres.J Control Release 28: 121–129, 1994.Google Scholar
  100. 100.
    Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y. In vitro drug release behavior of D,L-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate prepared by a novel spontaneous emulsification solvent diffusion method.J Pharm Sci 83: 727–732, 1994.PubMedGoogle Scholar
  101. 101.
    Yoo HS, Lee EA, Park TG. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages.J Control Release 82: 17–27, 2002.PubMedGoogle Scholar
  102. 102.
    Leo E, Brina B, Fomi F, Vandelli MA. In vitro evaluation of PLA nanoparticles containing a lipophilic drug in water-soluble or insoluble form.Int J Pharm 278: 133–141, 2004.PubMedGoogle Scholar
  103. 103.
    Matsumoto J, Nakada Y, Sakurai K, Nakamura T, Takahashi Y. Reparation of nanoparticles consisted of poly(L-lactide)-poly-(ethyleneglycol)-poly(L-lactide) and their evaluation in vitro.Int J Pharm 185: 93–101, 1999.PubMedGoogle Scholar
  104. 104.
    Blanco MD, Alonso MJ. Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres.Eur J Pharm Biopharm 43: 287–294, 1997.Google Scholar
  105. 105.
    Tobio M, Gref R, Sanchez A, Langer R, Alonso MJ. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration.Pharm Res 15: 270–275, 1998.PubMedGoogle Scholar
  106. 106.
    Gref R, Quellec P, Sanchez A, Calvo P, Dellacherie E, Alonso MJ. Development and characterization of CyA-loaded poly(lactic acid)-poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers.Eur J Pharm Biopharm 51: 111–118, 2001.PubMedGoogle Scholar
  107. 107.
    Kawashima Y, Yamamoto H, Takeuchi H, Hino T, Niwa T. Properties of a peptide containing DL-lactide/glycolide copolymer nanospheres prepared by novel emulsion solvent diffusion methods.Eur J Pharm Biopharm 45: 41–48, 1998.PubMedGoogle Scholar
  108. 108.
    Elamanchili P, Diwan M, Cao M, Samuel J. Characterization of poly(d,l-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells.Vaccine 22: 2406–2412, 2004.PubMedGoogle Scholar
  109. 109.
    Lucke A, Fustella E, Tessmar J, Gazzaniga A, Gopferich A. The effect of poly(ethylene glycol)-poly(D,L-lactic acid) diblock copolymers on peptide acylation.J Control Release 80: 157–168, 2002.PubMedGoogle Scholar
  110. 110.
    van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles.Pharm Res 17: 1159–1167, 2000.PubMedGoogle Scholar
  111. 111.
    Schwendeman SP. Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems.Crit Rev Ther Drug Carrier Syst 19: 73–98, 2002.PubMedGoogle Scholar
  112. 112.
    Cleland JL. Protein delivery from biodegradable microspheres.Pharm Biotechnol 10: 1–43, 1997.PubMedGoogle Scholar
  113. 113.
    Zambaux MF, Bonneaux F, Gref R, Dellacherie E, Vigneron C. Reparation and characterization of protein C-loaded PLA nanoparticles.J Control Release 60: 179–188, 1999.PubMedGoogle Scholar
  114. 114.
    Gaspar MM, Blanco D, Cruz MEM, Alonso MJ. Formulation of -asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release.J Control Release 52: 53–62, 1998.Google Scholar
  115. 115.
    Pean JM, Boury F, Venier-Julienne MC, Menei P, Roust JE, Benoit JP. Why does PEG 400 co-encapsulation improve NGF stability and release from PLGA biodegradable microspheres?Pharm Res 16: 1294–1299, 1999.PubMedGoogle Scholar
  116. 116.
    Pean JM, Menei P, Morel O, Montero-Menei CN, Benoit JP. Intraseptal implantation of NGF-releasing microspheres promote the survival of axotomized cholinergic neurons.Biomaterials 21: 2097–2101, 2000.PubMedGoogle Scholar
  117. 117.
    Sanchez A, Tobio M, Gonzalez L, Fabra A, Alonso MJ. Biodegradable micro- and nanoparticles as long-term delivery vehicles for interferon-α.Eur J Pharm Sci 18: 221–229, 2003.PubMedGoogle Scholar
  118. 118.
    Sah H. Stabilization of proteins against methylene chloride/water interface-induced denaturation and aggregation.J Control Release 58: 143–151, 1999.PubMedGoogle Scholar
  119. 119.
    Morlock M, Koll H, Winter G, Kissel T. Microencapsulation of rh-erythropoietin, using biodegradable poly(D,L-lactide-co-glycolide): protein stability and the effects of stabilizing excipients.Eur J Pharm Biopharm 43: 29–36, 1997.Google Scholar
  120. 120.
    Perez C, Sanchez A, Putnam D, Ting D, Langer R, Alonso MJ. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA.J Control Release 75: 211–224, 2001.PubMedGoogle Scholar
  121. 121.
    Rabha S, Zhou WZ, Panyam J, Labhasetwar V. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles.Int J Pharm 244: 105–115, 2002.Google Scholar
  122. 122.
    Rabha S, Labhasetwar V. Critical determinants in PLGA/PLA nanoparticle-mediated gene expression.Pharm Res 21: 354–364, 2004.Google Scholar
  123. 123.
    Labhasetwar V, Bonadio J, Goldstein SA, Levy RJ. Gene transfection using biodegradable nanospheres: results in tissue culture and a rat osteotomy model.Colloids Surfaces B: Biointerfaces 16: 281–290, 1999.Google Scholar
  124. 124.
    Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells.Int J Pharm 233: 51–59, 2002.PubMedGoogle Scholar
  125. 125.
    Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue.Adv Drug Deliv Rev 55: 329–347, 2003.PubMedGoogle Scholar
  126. 126.
    Panyam J, Zhou WZ, Rabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery.FASEB J 16: 1217–1226, 2002.PubMedGoogle Scholar
  127. 127.
    Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake.J Control Release 82: 105–114, 2004.Google Scholar
  128. 128.
    Zhang Y, Jeong Lee H, Boado RJ, Pardridge WM. Receptor-mediated delivery of an antisense gene to human brain cancer cells.J Gene Med 4: 183–194, 2002.PubMedGoogle Scholar
  129. 129.
    Delie F, Berton M, Allemann E, Gumy R. Comparison of two methods of encapsulation of an oligonucleotide into poly(D,L-lactic acid) particles.Int J Pharm 214: 25–30, 2001.PubMedGoogle Scholar
  130. 130.
    Berton M, Allemann E, Stein CA, Gumy R. Highly loaded nanoparticulate carrier using an hydrophobic antisense oligonucleotide complex.Eur J Pharm Sci 9: 163–170, 1999.PubMedGoogle Scholar
  131. 131.
    Berton M, Benimetskaya L, Allemann E, Stein CA, Gumy R. Uptake of oligonucleotide-loaded nanoparticles in prostatic cancer cells and their intracellular localization.Eur J Pharm Biopharm 47: 119–123, 1999.PubMedGoogle Scholar
  132. 132.
    Emile C, Bazile D, Herman F, Helene C, Vieillard M. Encapsulation of nucleotides in stealth Me.PEG-PLA50 nanoparticles by complexation with structures oligopeptides.Drug Deliv 3: 187–195, 1996.Google Scholar
  133. 133.
    Berton M, Benimetskaya L, Allemann E, Stein CA, Gumy R. Uptake of oligonucleotide-loaded nanoparticles in prostatic cancer cells and their intracellular localization.Eur J Pharm Biopharm 47:119–123.Google Scholar
  134. 134.
    Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes.Proc Natl Acad Sci USA 93: 14164–14169, 1996.PubMedGoogle Scholar
  135. 135.
    Zhang Y, Schlachetzki F, Pardridge WM. Global non-viral gene transfer to the primate brain following intravenous administration.Mol Ther 7: 11–18, 2003.PubMedGoogle Scholar
  136. 136.
    Shi N, Zhang Y, Zhu C, Boado RJ, Pardridge WM. Brain-specific expression of an exogenous gene after i.v. administration.Proc Natl Acad Sci USA 98: 12754–12759, 2001.PubMedGoogle Scholar
  137. 137.
    Shi N, Pardridge WM. Noninvasive gene targeting to the brain.Proc Natl Acad Sci USA 97: 7567–7572, 2000.PubMedGoogle Scholar
  138. 138.
    Zhang Y, Boado RJ, Pardridge WM. Absence of toxicity of chronic weekly intravenous gene therapy with pegylated immunoliposomes.Pharm Res 20: 1779–1785, 2003.PubMedGoogle Scholar
  139. 139.
    Salem AK, Cannizzaro SM, Davies MC, Tendier SJ, Roberts CJ, Williams PM, et al. Synthesis and characterisation of a degradable poly(lactic acid)-poly(ethylene glycol) copolymer with biotinylated end groups.Biomacromolecules 2: 575–580, 2001.PubMedGoogle Scholar
  140. 140.
    Tessmar J, Mikos A, Gopferich A. Amine-reactive biodegradable diblock copolymers.Biomacromolecules 3: 194–200, 2002.PubMedGoogle Scholar
  141. 141.
    Tessmar J, Mikos A, Gopferich A. The use of poly(ethylene glycol)-block-poly(lactic acid) derived copolymers for the rapid creation of biomimetic surfaces.Biomaterials 24: 4475–4486, 2003.PubMedGoogle Scholar
  142. 142.
    Olivier JC, Huertas R, Lee HJ, Calon F, Pardridge WM. Synthesis of pegylated immunonanoparticles.Pharm Res 19: 1137–1143, 2002.PubMedGoogle Scholar
  143. 143.
    Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation.Adv Drug Deliv Rev 54: 459–476, 2002.PubMedGoogle Scholar
  144. 144.
    Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles.J Control Release 96: 273–283, 2004.PubMedGoogle Scholar
  145. 145.
    Gref R, Couvreur P, Barratt G, Mysiakine E. Surface-engineered nanoparticles for multiple ligand coupling.Biomaterials 24: 4529–4537, 2003.PubMedGoogle Scholar
  146. 146.
    Kang YS, Saito Y, Pardridge WM. Pharmacokinetics of [3H]biotin bound to different avidin analogues.J Drug Target 3: 159–165, 1995.PubMedGoogle Scholar
  147. 147.
    Yamamoto Y, Nagasaki Y, Kato M, Kataoka K. Surface charge modulation of poly(ethylene glycol)poly(L-lactide) block copolymer micelles: conjugation of charged peptides.Colloids Surfaces B: Biointerfaces 16: 135–146, 1999.Google Scholar
  148. 148.
    Emoto K, Nagasaki Y, Iijima M, Kato M, Kataoka K. Preparation of non-fouling surface through the coating with core-polymerized block copolymer micelles having aldehyde-ended PEG shell.Colloids Surfaces B: Biointerfaces 18: 337–346, 2000.Google Scholar
  149. 149.
    Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K. Long-circulating poly(ethylene glycol)-poly(-lactide) block copolymer micelles with modulated surface charge.J Control Release 77: 27–38, 2001.PubMedGoogle Scholar
  150. 150.
    Pardridge WM, Boado RJ, Kang YS. Vector-mediated delivery of a polyamide (“peptide”) nucleic acid analogue through the blood-brain barrier in vivo.Proc Natl Acad Sci USA 92: 5592–5596, 1995.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2005

Authors and Affiliations

  1. 1.Faculty of Medicine and PharmacyUniversity of PoitiersPoitiersFrance

Personalised recommendations