, Volume 1, Issue 4, pp 472–481

Immune problems in central nervous system cell therapy



Transplantation of cells and tissues to the mammalian brain and CNS has revived the interest in the immunological status of brain and its response to grafted tissue. The previously held view that the brain was an absolute “immunologically privileged site” allowing indefinite survival without rejection of grafts of cells has proven to be wrong. Thus, the brain should be regarded as a site where immune responses can occur, albeit in a modified form, and under certain circumstances these are as vigorous as those seen in other peripheral sites. Clinical cell transplant trials have now been performed in Parkinson’s disease, Huntington’s disease, demyelinating diseases, retinal disorders, stroke, epilepsy, and even deafness, and normally are designed as cell replacement strategies, although implantation of genetically modified cells for supplementation of growth factors has also been tried. In addition, some disorders of the CNS for which cell therapies are being considered have an immunological basis, such as multiple sclerosis, which further complicates the situation. Embryonic neural tissue allografted into the CNS of animals and patients with neurodegenerative conditions survives, makes and receives synapses, and ameliorates behavioral deficits. The use of aborted human tissue is logistically and ethically complicated, which has lead to the search for alternative sources of cells, including xenogeneic tissue, genetically modified cells, and stem cells, all of which can and will induce some level of immune reaction. We review some of the immunological factors involved in transplantation of cells to CNS.

Key Words

Immunity brain transplantation embryonic tissue gene therapy xenograft 


  1. 1.
    Billingham RW, Boswell T. Studies on the problem of corneal honografts.Proc R Soc Lond B Biol Sci 141: 392–406, 1953.PubMedCrossRefGoogle Scholar
  2. 2.
    Barker CF, Billingham RE. Immunologically privileged sites.Adv Immunol 25: 1–54, 1977.PubMedCrossRefGoogle Scholar
  3. 3.
    Brabb T, von Dassow P, Ordonez N, Schnabel B, Duke B, Goverman J. In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity.J Exp Med 192: 871–880, 2000.PubMedCrossRefGoogle Scholar
  4. 4.
    Widner H, Brundin P. Immunological aspects of grafting in the mammalian central nervous system. A speculative synthesis.Brain Res Rev 13: 287–324, 1988.CrossRefGoogle Scholar
  5. 5.
    Hickey WH. Basic principles of immunological surveillance of the normal central nervous system.Glia 36: 118–124, 2001.PubMedCrossRefGoogle Scholar
  6. 6.
    Auchincloss H, Sultan H. Antigen processing and presentation in transplantation.Curr Opin Immunol 8: 681–687, 1996.PubMedCrossRefGoogle Scholar
  7. 7.
    Hong S, Scherer DC, Singh N, Mendiratta SK, Serizawa I, Koezuka Y, Van Kaer L. Lipid antigen presentation in the immune system: lessons learned from CDld knockout mice.Immunol Rev 169: 31–44, 1999.PubMedCrossRefGoogle Scholar
  8. 8.
    Mason DW, Charlton HM, Jones AJ, Lavy CB, Puklavec M, Simmonds SJ. The fate of allogeneic and xenogeneic neuronal tissue transplanted into the third ventricle of the rodents.Neuroscience 19: 685–694, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Pakzaban P, Isacson O. Neuronal xenotransplantation: reconstruction of neuronal circuitry across species barriers.Neuroscience 62: 989–1001, 1994.PubMedCrossRefGoogle Scholar
  10. 10.
    Brevig T, Holgersson J, Widner H. Xenotransplantation for CNS repair: immunological barriers and strategies to overcome them.Trends Neurosci 23: 337–344, 2000.PubMedCrossRefGoogle Scholar
  11. 11.
    Cascalho M, Platt JL. The immunological barrier to xenotransplantation.Immunity 14: 437–446, 2001.PubMedCrossRefGoogle Scholar
  12. 12.
    Galili U. Interaction of the natural anti-Gal antibody with α-galactosyl epitopes: a major obstacle for xenotransplantation in humans.Immunol Today 14: 480–482, 1993.PubMedCrossRefGoogle Scholar
  13. 13.
    Brundin P, Widner H, Nilsson OG, Strecker RE, Björklund A. Intracerebral xenografts of dopamine neurons: the role of immunosuppression and the blood-brain barrier.Exp Brain Res 75: 195–207, 1989.PubMedCrossRefGoogle Scholar
  14. 14.
    Barker-Cairns BJ, Sloan DJ, Broadwell RD, Puklavec M, Charlton HM. Contribution of donor and host blood vessels in CNS allografts.Exp Neurol 142: 36–46, 1996.CrossRefGoogle Scholar
  15. 15.
    Steward PA, Clements CA, Wiley MJ. Revascularization of skin transplanted into the brain: source of the graft endothelium.Microvasc Res 28: 113–124, 1984.CrossRefGoogle Scholar
  16. 16.
    Hart DNJ, Fabre WJ. Demonstration and characterization of Iapositive dendritic cells in the interstitial connective tissues of rat heart and other tissue, but not brain.J Exp Med 153: 347–361, 1981.CrossRefGoogle Scholar
  17. 17.
    Lowenstein PR. Immunology of viral-vector-mediated gene transfer into the brain: an evolutionary and developmental perspective.Trends Immunol 23: 23–30, 2002.PubMedCrossRefGoogle Scholar
  18. 18.
    Perry VH, Hume DA, Gordon S. Immunohistochemical localisation of macrophages and microglia in the adult and developing mouse brain.Neuroscience 15: 313–326, 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Graeber MB, Streit WJ. Perivascular microglia defined.Trends Neurosci 13: 366–370, 1990.PubMedCrossRefGoogle Scholar
  20. 20.
    Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone-marrow derived and present antigen in vivo.Science 239: 290–292, 1988.PubMedCrossRefGoogle Scholar
  21. 21.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity.Nature 392: 245–252, 1998.PubMedCrossRefGoogle Scholar
  22. 22.
    Santambrogio L, Belyanskaya SL, Fischer FR, Cipriani B, Brosnan CF, Ricciardi-Castagnoli P, Stern LJ, Strominger JL, Riese R. Developmental plasticity of CNS microglia.Proc Natl Acad Sci USA 98: 6295–6300, 2001.PubMedCrossRefGoogle Scholar
  23. 23.
    Czapiga M, Colton CA. Function of microglia in organotypic slice cultures.J Neurosci Res 56: 644–651, 1999.PubMedCrossRefGoogle Scholar
  24. 24.
    Prineas JW. Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord.Science 203: 1123–1125, 1979.PubMedCrossRefGoogle Scholar
  25. 25.
    Fischer HG, Bielinsky AK. Antigen presentation function of brain-derived dendriform cells depends on astrocyte help.Int Immunol 11: 1265–1274, 1999.PubMedCrossRefGoogle Scholar
  26. 26.
    Gould DS, Auchincloss H Jr. Direct and indirect recognition: the role of MHC antigens in graft rejection.Immunol Today 20: 77–82, 1999.PubMedCrossRefGoogle Scholar
  27. 27.
    Waldmann H, Cobbold S. Regulating the immune response to transplants. A role for CD4+ regulatory cells?Immunity 14: 399–406, 2001.PubMedCrossRefGoogle Scholar
  28. 28.
    Maloy KJ, Poiwre F. Regulatory T cells in the control of immune pathology.Nat Immunol 2: 816–822, 2001.PubMedCrossRefGoogle Scholar
  29. 29.
    Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily.Genome Res 11: 1156–1166, 2001.PubMedCrossRefGoogle Scholar
  30. 30.
    Baron JL, Madri JA, Ruddle NH, Hashim G, Janeway CA. Surface expression of a4 integrin by CD4 T cells is required for their entry into the brain parenchyma.J Exp Med 177: 57–68, 1993.PubMedCrossRefGoogle Scholar
  31. 31.
    Merrill JE, Murphy SP. Inflammatory events at the blood brain barrier: regulation of adhesion molecules, cytokines, and chemokines by reactive nitrogen and oxygen species.Brain Behav Immun 11: 245–263, 1997.PubMedCrossRefGoogle Scholar
  32. 32.
    Streilein WJ. Tissue barrier, immunosuppressive microenvironments, and privileged sites: the eye’s point of view.Regul Immunol 5: 253–268, 1993.Google Scholar
  33. 33.
    Wang T, Donahue PK, Zervos AS. Specific interaction of type I receptors of the TGF-β family with the immunophilin FKBR-12.Science 265: 674–676, 1994.PubMedCrossRefGoogle Scholar
  34. 34.
    Bechmann I, Mor G, Nilsen J, Eliza M, Nitsch R, Naftolin F. FasL (CD95L, Apo1L) is expressed in the normal rat and human brain: evidence for the existence of an immunological brain barrier.Glia 27: 62–74, 1999.PubMedCrossRefGoogle Scholar
  35. 35.
    Widner H. Immunological issues in rodent and primate transplants (allografts). In: Cell transplantation for neurological disorders. Toward reconstruction of the human central nervous system (Freeman T, Widner H, eds), pp 171–188. Totowa, NY: Humana Press, 1998.Google Scholar
  36. 36.
    Pedersen EB, Poulsen FR, Zimmer J, Finsen B. Prevention of mouse-rat brain xenograft rejection by a combination therapy of cyclosporin A, prednisolone and azathioprine.Exp Brain Res 106: 181–186, 1995.PubMedCrossRefGoogle Scholar
  37. 37.
    Mirza B, Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease.Neuroscience 95: 425–432, 1999.CrossRefGoogle Scholar
  38. 38.
    Okura Y, Tanaka R, Ono K, Yoshida S, Tanuma N, Matsumoto Y. Treatment of rat hemiparkinson model with xenogeneic neural transplantation: tolerance induction by anti-T-cell antibodies.J Neurosci Res 48: 385–396, 1997.PubMedCrossRefGoogle Scholar
  39. 39.
    Wood MJ, Sloan DJ, Wood KJ, Charlton HM. Indefinite survival of neural xenografts induced with anti-CD4 monoclonal antibodies.Neuroscience 70: 775–789, 1996.PubMedCrossRefGoogle Scholar
  40. 40.
    Larsson LC, Corbascio M, Widner H, Pearson TC, Larsen CP, Ekberg H. Simultaneous inhibition of B7 and LFA-1 signaling prevents rejection of discordant neural xenografts in mice lacking CD40L.Xenotransplantation 9: 68–76, 2002.PubMedCrossRefGoogle Scholar
  41. 41.
    Larsson LC, Corbascio M, Pearson TC, Larsen CP, Ekberg H, Widner H. Induction of operational tolerance to discordant dopaminergic porcine xenografts.Transplantation 75: 1448–1454, 2003.PubMedCrossRefGoogle Scholar
  42. 42.
    Widner H, Brundin P, Björklund A, Möller E. Survival and immunogenicity of dissociated allogeneic fetal neural dopamine-rich grafts when implanted into the brains of adult mice.Exp Brain Res 76: 187–197, 1989.PubMedCrossRefGoogle Scholar
  43. 43.
    Widner H, Brundin P. Sequential intracerebral transplantation of allogeneic and syngeneic fetal dopamine-rich neuronal tissue in adult rats: will the first graft be rejected?Cell Transplant 2: 307–317, 1993.PubMedGoogle Scholar
  44. 44.
    Duan W-M, Brundin P, Björklund A, Widner H. Sequential intracerebral transplantation of allogeneic and syngeneic fetal dopamine-rich neuronal tissue in adult rats: will the second graft be rejected?Neuroscience 57: 261–274, 1994.CrossRefGoogle Scholar
  45. 45.
    Duan W-M, Cameron RM, Brundin P, Widner H. Rat intrastriatal neural allografts challenged with skin allografts at different time-points.Exp Neurol 148: 334–347, 1997.PubMedCrossRefGoogle Scholar
  46. 46.
    Duan W-M, Widner H, Cameron RM, Brundin P. Quinolinic acid-induced inflammation in the striatum does not impair the survival of neural allografts in the rat.Eur J Neurosci 10: 2595–2606, 1998.PubMedCrossRefGoogle Scholar
  47. 47.
    Schwarz SC, Kupsch AR, Banati R, Oertel WH. Cellular immune reactions in brain transplantation: effects of graft pooling and immunosuppression in the 6-hydroxydopamine rat model of Parkinson’s disease.Glia 17: 103–120, 1996.PubMedCrossRefGoogle Scholar
  48. 48.
    Wood MJ, Sloan DJ, Dallman MJ, Charlton HM. Specific tolerance to neural allografts induced with an antibody to the interleukin 2 receptor.J Exp Med 177: 597–603, 1993.PubMedCrossRefGoogle Scholar
  49. 49.
    Bachoud-Levi AC, Hantraye P, Peschanski M. Fetal neural grafts for Huntington’s disease: a prospective view.Mov Disord 17: 439–444, 2002.PubMedCrossRefGoogle Scholar
  50. 50.
    Barker RA. Repairing the brain in Parkinson’s disease: where next?Mov Disord 17: 233–241, 2002.PubMedCrossRefGoogle Scholar
  51. 51.
    Björklund A, Lindvall O. Cell replacement therapies for central nervous system disorders.Nat Neurosci 3: 537–544, 2000.PubMedCrossRefGoogle Scholar
  52. 52.
    Lindvall O, Hagell P. Clinical observations after neural transplantation in Parkinson’s disease.Prog Brain Res 127: 299–320, 2000.PubMedCrossRefGoogle Scholar
  53. 53.
    Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease.Ann Neurol 54: 403–414, 2003.PubMedCrossRefGoogle Scholar
  54. 54.
    Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease.N Engl J Med 344: 710–719, 2001.PubMedCrossRefGoogle Scholar
  55. 55.
    Spencer DD, Robbins RJ, Naftolin F, Marek KL, Vollmer T, Leranth C, Roth RH, Price LH, Gjedde A, Bunney BS, Sass KJ, Elsworth JD, Kier EL, Makuch R, Hoffer PB, Redmond DE. Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease.N Engl J Med 327: 1541–1548, 1992.PubMedCrossRefGoogle Scholar
  56. 56.
    Sauer H, Frodl EM, Kupsch A, ten Bruggencate G, Oertel WH. Cryopreservation, survival and function of intrastriatal fetal mesencephalic grafts in a rat model of Parkinson’s disease.Exp Brain Res 90: 54–62, 1992.PubMedCrossRefGoogle Scholar
  57. 57.
    Hagell P, Brundin P. Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease.J Neuropathol Exp Neurol 60: 741–752, 2001.PubMedGoogle Scholar
  58. 58.
    Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJG, Mufson EJ, Sanberg PR, Hauser RA, Smith DA, Nauert GM, Perl DP, Olanow CW. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesence phalic tissue in a patient with Parkinson’s disease.N Engl J Med 332: 1118–1124, 1995.PubMedCrossRefGoogle Scholar
  59. 59.
    Kordower JH, Styren S, Clarke M, DeKosky ST, Olanow CW, Freeman TB. Fetal grafting for Parkinson’s disease: expression of immune markers in two patients with functional fetal nigral implants.Cell Transplant 6: 213–219, 1997.PubMedCrossRefGoogle Scholar
  60. 60.
    Pedersen EB, Widner H. Xenotransplantation.Prog Brain Res 127: 157–188, 2000.PubMedCrossRefGoogle Scholar
  61. 61.
    Barker RA, Ratcliffe E, McLaughlin M, Richards A, Dunnett SB. A role for complement in the rejection of porcine ventral mesencephalic xenografts in a rat model of Parkinson’s disease.J Neurosci 20: 3415–3424, 2000.PubMedGoogle Scholar
  62. 62.
    Larsson LC, Czech KA, Widner H, Korsgren O. Discordant neural tissue xenografts survive longer in immunoglobulin deficient mice.Transplantation 68: 1153–1160, 1999.PubMedCrossRefGoogle Scholar
  63. 63.
    Hurelbrink CB, Armstrong RJ, Dunnett SB, Rosser AE, Barker RA. Neural cells from primary human striatal xenografts migrate extensively in the adult rat CNS.Eur J Neurosci 15: 1255–1266, 2002.PubMedCrossRefGoogle Scholar
  64. 64.
    Brevig T, Pedersen EB, Kristensen T, Zimmer J. Proliferative response of human T lymphocytes to porcine fetal brain cells.Cell Transplant 6: 571–577, 1997.PubMedCrossRefGoogle Scholar
  65. 65.
    Wennberg L, Czech KA, Larsson L, Bennett W, Song Z, Widner H. Effects of immunosuppressive treatment on host responses and survival of porcine neural xenografts in rats.Transplantation 71: 1797–1806, 2001.PubMedCrossRefGoogle Scholar
  66. 66.
    Galpern WR, Burns LH, Deacon TW, Dinsmore J, Isacson O. Xenotransplantation of porcine ventral mesencephalon in a rat model of Parkinson’s disease: functional recovery and graft morphology.Exp Neurol 140: 1–13, 1996.PubMedCrossRefGoogle Scholar
  67. 67.
    Larsson LC, Czech KA, Brundin P, Widner H. Intrastriatal ventral mesencephalic xenografts of porcine tissue in rats: immune response and functional effects.Cell Transplant 9: 261–272, 2000.PubMedGoogle Scholar
  68. 68.
    Sumitran S, Liu J, Czech KA, Christensson B, Widner H, Holgersson J. Human natural antibodies cytotoxic to pig embryonic brain cells recognize novel non-Galα1,3Gal-based xenoantigens.Exp Neurol 159: 347–361, 1999.PubMedCrossRefGoogle Scholar
  69. 69.
    Cicchetti F, Fodor W, Deacon TW, van Horne C, Rollins S, Burton W, Costantini LC, Isacson O. Immune parameters relevant to neural xenograft survival in the primate brain.Xenotransplantation 10: 41–49, 2003.PubMedCrossRefGoogle Scholar
  70. 70.
    Harrower TP, Richards A, Cruz G, Copeman L, Dunnett SB, Barker RA. Complement regulatory proteins are expressed at low levels in embryonic human, wild type and transgenic porcine neural tissue.Xenotransplantation 11: 60–71, 2004.PubMedCrossRefGoogle Scholar
  71. 71.
    Schumacher JM, Ellias SA, Palmer EP, Kott HS, Dinsmore J, Dempsey PK, Fischman AJ, Thomas C, Feldman RG, Kassissieh S, Raineri R, Manhart C, Penney D, Fink JS, Isacson O. Transplantation of embryonic porcine mesencephalic tissue in patients with PD.Neurology 54: 1042–1050, 2000.PubMedGoogle Scholar
  72. 72.
    Deacon T, Schumacher J, Dinsmore J, Thomas C, Palmer P, Kott S, Edge A, Penney D, Kassissieh S, Dempsey P, Isacson O. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson’s disease.Nat Med 3: 350–353, 1997.PubMedCrossRefGoogle Scholar
  73. 73.
    Fink JS, Schumacher JM, Ellis SL, Plamer EP, Saint-Hilare M. Porcine xenografts in Parkinson’s and Huntington’s disease patients: preliminary results.Cell Transplant 9: 273–278, 2000.PubMedGoogle Scholar
  74. 74.
    Weiss RA. Xenografts and retroviruses.Science 285: 1221–1222, 1999.PubMedCrossRefGoogle Scholar
  75. 75.
    Paradis K, Langford G, Long Z, Heneine W, Sandstrom P, Switzer WM, Chapman LE, Lockey C, Onions D, Otto E. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group.Science 285: 1236–1241, 1999.PubMedCrossRefGoogle Scholar
  76. 76.
    Dinsmore J, Mnahart C, Raineri R. No evidence for infection of human cells with porcine endogenous retrovirus (PERV) after exposure to porcine fetal neuronal cells.Transplantation 70: 1382–1389, 2000.PubMedCrossRefGoogle Scholar
  77. 77.
    Brown VJ, Dunnett SB. Comparison of adrenal and fetal nigral grafts on drug-induced rotation in rats with 6-OHDA lesions.Exp Brain Res 78: 214–218, 1989.PubMedCrossRefGoogle Scholar
  78. 78.
    Dunnett SB, Björklund A. Prospects for new restorative and neuroprotective treatments in Parkinson’s disease.Nature 399: A32-A39, 1999.PubMedCrossRefGoogle Scholar
  79. 79.
    Horellou P, Vigne E, Castel MN, Barneoud P, Colin P, Perricaudet M, Delaere P, Mallet J. Direct intracerebral gene transfer of an adenoviral vector expressing tyrosine hydroxylase in a rat model of Parkinson’s disease.NeuroReport 6: 49–53, 1994.PubMedCrossRefGoogle Scholar
  80. 80.
    Thomas CE, Birkett D, Anozie I, Castro MG, Lowenstein PR. Acute direct adenoviral vector cytotoxicity and chronic, but not acute, inflammatory responses correlate with decreased vector-mediated transgene expression in the brain.Mol Ther 1: 36–46, 2001.CrossRefGoogle Scholar
  81. 81.
    Byrnes AP, Wood MJ, Charlton HM. Role of T cells in inflammation caused by adenovirus vectors in the brain.Gene Ther 3: 644–651, 1996.PubMedGoogle Scholar
  82. 82.
    Gray DW. An overview of the immune system with specific reference to membrane encapsulation and islet transplantation.Ann NY Acad Sci 944: 226–239, 2001.PubMedCrossRefGoogle Scholar
  83. 83.
    Temple S. Stem cell plasticity—building the brain of our dreams.Nat Rev Neurosci 2: 513–520, 2001.PubMedCrossRefGoogle Scholar
  84. 84.
    Lanza RP, Chung HY, Yoo JJ, Wettstein PJ, Blackwell C, Borson N, Hofmeister E, Schuch G, Soker S, Moraes CT, West MD, Atala A. Generation of histocompatible tissues using nuclear transplantation.Nat Biotechnol 20: 689–696, 2002.PubMedCrossRefGoogle Scholar
  85. 85.
    Björklund L, Sanchez-Pernaute R, Chung S, Andersson T, Yin Ching Chen I, McNaught K, Brownell A-L, Jenkins BG, Wahlstedt C, Kim K-S, Isacson O. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model.Proc Natl Acad Sci USA 99: 2344–2349, 2002.PubMedCrossRefGoogle Scholar
  86. 86.
    Armstrong RJ, Hurelbrink CB, Tyers P, Ratcliffe EL, Richards A, Dunnett SB, Rosser AE, Barker RA. The potential for circuit reconstruction by expanded neural precursor cells explored through porcine xenografts in a rat model of Parkinson’s disease.Exp Neurol 175: 98–111, 2002.PubMedCrossRefGoogle Scholar
  87. 87.
    Fricker RA, Carpenter MK, Winkler C, Greco C, Gates MA, Björklund A. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain.J Neurosci 19: 5990–6005, 1999.PubMedGoogle Scholar
  88. 88.
    Rosser AE, Tyers P, Dunnett SB. The morphological development of neurons derived from EGF- and FGF-2-driven human CNS precursors depends on their site of integration in the neonatal rat brain.Eur J Neurosci 12: 2405–2413, 2000.PubMedCrossRefGoogle Scholar
  89. 89.
    Olsson M, Bentlage C, Wictorin K, Campbell K, Björklund A. Extensive migration and target innervation by striatal precursors after grafting into the neonatal striatum.Neuroscience 79: 57–78, 1997.PubMedCrossRefGoogle Scholar
  90. 90.
    Blixt Wojciechowski A, Englund U, Lundberg C, Wictorin K, Warfinge K. Subretinal transplantation of brain-derived precursor cells to young RCS rats promotes photoreceptor cell survival.Exp Eye Res 75: 23–37, 2002.CrossRefGoogle Scholar
  91. 91.
    Blixt Wojciechowski A, Englund U, Lundberg C, Warfinge K. The brain derived precursor cell line RN33B and its response to different immunosuppression after subretinal transplantation to the adult normal rat.Exp Eye Res (in press).Google Scholar
  92. 92.
    Armstrong RJ, Harrower TP, Hurelbrink CB, McLaughin M, Ratcliffe EL, Tyers P, Richards A, Dunnett SB, Rosser AE, Barker RA. Porcine neural xenografts in the immunocompetent rat: immune response following grafting of expanded neural precursor cells.Neuroscience 106: 201–216, 2001.PubMedCrossRefGoogle Scholar
  93. 93.
    Mirza B, Krook H, Andersson P, Larsson L, Korsgren O, Widner H. Intracerebral cytokine profiles in adult rats grafted with neural tissue of different immunological disparity.Brain Res Bull 63: 105–118, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2004

Authors and Affiliations

  1. 1.Cambridge Center for Brain Repair and Department of NeurologyCambridgeUK
  2. 2.Department of Clinical Neurosciences, Division of NeurologyLund University HospitalLundSweden
  3. 3.Department of Physiology and Neuroscience, Wallenberg Neuroscience CenterLund UniversityLundSweden

Personalised recommendations