Advertisement

NeuroRX

, Volume 1, Issue 2, pp 284–294 | Cite as

Biomarkers and surrogate outcomes in neurodegenerative disease: Lessons from multiple sclerosis

  • David H. Miller
Article

Summary

Multiple sclerosis (MS) is a chronic disease of the CNS that most commonly affects young adults. It is usually characterized in the early years by acute relapses followed by partial or complete remission; in later years progressive and irreversible disability develops. Because of the protracted and unpredictable clinical course, biological surrogate markers are much needed to make clinical trials of potential disease-modifying treatments more efficient. Magnetic resonance (MR) outcome measures are now widely used to monitor treatment outcome in MS trials. Areas of multifocal inflammation are detected with a high sensitivity as new areas of gadolinium enhancement and T2 abnormality, and these may be considered as surrogate markers for clinical relapses. However, progressive disability is not clearly related to inflammatory lesions but rather to a progressive and diffuse process with increasing neuroaxonal loss. MR surrogate measures for neuroaxonal loss include atrophy (tissue loss in brain and spinal cord), N-acetyl aspartate, and T1 hypointense lesions. Diffuse abnormality in normal appearing brain tissue may also be monitored using magnetization transfer ratio and other quantitative MR measures. For treatment trials of new agents aimed at preventing disability, measures of neuroaxonal damage should be acquired, especially atrophy, which occurs at all stages of MS and which can be quantified in a sensitive and reproducible manner. Because the MR surrogates for neuroaxonal loss are not yet validated as predicting future disability, definitive trials should continue to monitor an appropriate disability endpoint.

Key Words

Multiple sclerosis inflammation neuroaxonal loss magnetic resonance markers treatment trials 

References

  1. 1.
    Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis.N Engl J Med 338: 278–285, 1998.PubMedCrossRefGoogle Scholar
  2. 2.
    Lassmann H, Suchanek G, Ozawa K. Histopathology and the blood-cerebrospinal fluid barrier in multiple sclerosis.Ann Neurol 36(Suppl): S42-S46, 1994.PubMedCrossRefGoogle Scholar
  3. 3.
    Thompson A, Kermode A, MacManus D, Kendall B, Kingsley D, Moseley I, McDonald W. Major differences in the dynamics of primary and secondary progressive multiple sclerosis.Ann Neurol 29: 53–62, 1991.PubMedCrossRefGoogle Scholar
  4. 4.
    Allen IV, McKeown SR. A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis.J Neurol Sci 41: 81–89, 1979.PubMedCrossRefGoogle Scholar
  5. 5.
    Evangelou N, Esiri MM, Smith S, Palace J, Mathews PM. Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis.Ann Neurol 47: 391–395, 2000.PubMedCrossRefGoogle Scholar
  6. 6.
    Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neuritis, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions.Ann Neurol 50: 389–400, 2001.PubMedCrossRefGoogle Scholar
  7. 7.
    Cifelli A, Arridge M, Jezzard P, Esiri MM, Palace J, Matthews PM. Thalamic neurodegeneration in multiple sclerosis.Ann Neurol 52: 650–653, 2002.PubMedCrossRefGoogle Scholar
  8. 8.
    Giovannoni G, Lai M, Kidd D, Thorpe JW, Miller DH, Thompson AJ, Keir G, Feldmann M, Thompson EJ. Daily urinary neopterin excretion as an immunological marker of disease activity in multiple sclerosis.Brain 120: 1–13, 1997.PubMedCrossRefGoogle Scholar
  9. 9.
    Berger T, Rubner N, Schautzer F, Egg R, Ulmer H, Mayringer I et al. Antimyelion antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event.N Engl J Med 349: 139–145, 2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis. Quantitative in vivo imaging of microglia as a measure of disease activity.Brain 123: 2321–2337, 2000.PubMedCrossRefGoogle Scholar
  11. 11.
    Debruyne JC, Versijpt J, van Laere KJ, de Vos F, Keppens J, Strijckmans K et al. PET visualization of microglia in multiple sclerosis patients using [11C]PK11195.Eur J Neurol 10: 257–264, 2003.PubMedCrossRefGoogle Scholar
  12. 12.
    McDonald WI, Compston A, Edan G, Goodkin D, Hartung H-P, Lublin FD et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis.Ann Neurol 50: 121–127, 2001.PubMedCrossRefGoogle Scholar
  13. 13.
    Katz D, Taubenberger J, Cannella B, McFarlin D, Raine C, McFarland H. Correlation between magnetic resonance imaging findings and lesion development in multiple sclerosis.Ann Neurol 34: 661–669, 1993.PubMedCrossRefGoogle Scholar
  14. 14.
    Bruck W, Bitsch A, Kolenda H, Bruck Y, Stiefel M, Lassmann H. Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology.Ann Neurol 42: 783–793, 1997.PubMedCrossRefGoogle Scholar
  15. 15.
    Grossman RI, Gonzales-Scarano F, Atalas SW, Galetta S, Silberberg DH. Multiple sclerosis: gadolinium enhancement in MR imaging.Radiology 169: 117–122, 1986.Google Scholar
  16. 16.
    Thorpe JW, Kidd D, Moseley IF, Kendall BE, Thompson AJ, MacManus DG et al. Serial gadolinium enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis.Neurology 46: 373–378, 1996.PubMedGoogle Scholar
  17. 17.
    Hickman SJ, Toosy AT, Miszkiel KA, Jones SJ, Altmann DR, MacManus DG et al. Predicting visual recovery following optic neuritis: a clinical, electrophysiological and magnetic resonance imaging study.Mult Scler 9(Suppl 1): S95, 2003.Google Scholar
  18. 18.
    Youl BD, Turano G, Miller DH, Towell AD, MacManus DG, Moore SG et al. The pathophysiology of optic neuritis: an association of gadolinium leakage with clinical and electrophysiological deficits.Brain 114: 2437–2450, 1991.PubMedCrossRefGoogle Scholar
  19. 19.
    Kappos L, Moeri D, Radue EW, Schoetzau A, Schweikert K, Barkhof F et al. Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis.Lancet 353: 964–969, 1999.PubMedCrossRefGoogle Scholar
  20. 20.
    Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice G, Libonati LA, Wilmer-Hulme A, Dalton C, Miszkiel K, O’Connor PW. A controlled trial of natalizumab for relapsing multiple sclerosis.N Engl J Med 348: 15–23, 2003.PubMedCrossRefGoogle Scholar
  21. 21.
    Brex PA, Ciccarelli O, O’Riordan JI, Sailer M, Thompson AJ, Miller DH. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis.N Engl J Med 346: 158–164, 2002.PubMedCrossRefGoogle Scholar
  22. 22.
    Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process.Brain 126: 770–782, 2003.PubMedCrossRefGoogle Scholar
  23. 23.
    Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of multiple sclerosis.N Engl J Med 343: 1430–1438, 2000.PubMedCrossRefGoogle Scholar
  24. 24.
    Harris JO, Frank JA, Patronas N, McFarlin DE, McFarland HF. Serial gadolinium-enhanced magnetic resonance imaging scans in patients with early, relapsing-remitting multiple sclerosis: implications for clinical trials and natural history.Ann Neurol 29: 548–555, 1991.PubMedCrossRefGoogle Scholar
  25. 25.
    Thompson AJ, Miller DH, Youl B, MacManus D, Moore S, Kingsley D et al. Serial gadolinium enhanced MRI in relapsing remitting multiple sclerosis of varying disease duration.Neurology 42: 60–63, 1992.PubMedGoogle Scholar
  26. 26.
    Tubridy N, Coles A, Molyneux P, Compston DAS, Barkhof F, Thompson AJ et al. Secondary progressive multiple sclerosis: the relationship between short-term MRI activity and clinical features.Brain 121: 225–231, 1998.PubMedCrossRefGoogle Scholar
  27. 27.
    Lai HM, Hodgson T, Gawne-Cain M, Webb S, MacManus D, McDonald WI et al. A preliminary study into the sensitivity of disease activity detection by serial weekly magnetic resonance imaging in multiple sclerosis.J Neurol Neurosurg Psychiatry 60: 339–341, 1996.PubMedCrossRefGoogle Scholar
  28. 28.
    Filippi M, Yousry T, Campi A, Kanziora C, Colombo B, Voltz R et al. Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with MS.Neurology 46: 379–384, 1996.PubMedGoogle Scholar
  29. 29.
    van Waesberghe JHTM, Castelijns JA, Roser W, Silver N, Yousry T, Lycklama A, Nijeholt GJ et al. Single-dose gadolinium with magnetization transfer versus triple-dose gadolinium in the MR detection of multiple sclerosis lesions.AJNR Am J Neuroradiol 18: 1279–1285, 1997.PubMedGoogle Scholar
  30. 30.
    Silver NC, Good CD, Barker GJ, MacManus DG, Thompson AJ, Moseley IF et al. Sensitivity of contrast enhanced MRI in MS: effects of gadolinium dose, magnetization transfer contrast and delayed imaging.Brain 120: 1149–1161, 1997.PubMedCrossRefGoogle Scholar
  31. 31.
    Silver NC, Good CD, Sormani MP, MacManus DG, Thompson AJ, Filippi M, Miller DH. A modified protocol to improve the detection of enhancing brain and spinal cord lesions in multiple sclerosis.J Neurol 248: 215–224, 2001.PubMedCrossRefGoogle Scholar
  32. 32.
    McFarland HF, Frank J, Albert P, Smith M, Martin R, Harris J et al. Using gadolinium-enhanced magnetic resonance imaging lesions to monitor disease activity in multiple sclerosis.Ann Neurol 32: 758–766, 1992.PubMedCrossRefGoogle Scholar
  33. 33.
    Tubridy N, Ader HJ, Barkhof F, Thompson AJ, Miller DH. Exploratory treatment trials in multiple sclerosis using MRI: sample size calculations for relapsing remitting and secondary progressive subgroups using placebo controlled parallel groups.J Neurol Neurosurg Psychiatry 64: 50–55, 1998.PubMedCrossRefGoogle Scholar
  34. 34.
    Paty DW, Li DK. UBC MS/MRI Study Group and IFNB Multiple Sclerosis Study Group. Interferon-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis result of a multi-center, randomized, double-blind, placebo-controlled trial.Neurology 43: 662–667, 1993.PubMedGoogle Scholar
  35. 35.
    McFarland HF, Barkhof F, Antel J, Miller DH. The role of MRI as a surrogate outcome measure in multiple sclerosis.Mult Scler 8: 40–51, 2002.PubMedGoogle Scholar
  36. 36.
    Davie C, Hawkins CP, Barker GJ, Brennan A, Tofts PS, Miller DH, McDonald WI. Serial proton magnetic resonance spectroscopy of multiple sclerosis lesions.Brain 117: 49–58, 1994.PubMedCrossRefGoogle Scholar
  37. 37.
    Brex PA, Parker GJM, Leary SM, Molyneux PD, Barker GJ, Davie CA et al. Lesion heterogeneity in MS: a study of the relations between appearances on T1 weighted images, T1 relaxation times and metabolite concentrations.J Neurol Neurosurg Psychiatry 68: 627–632, 2000.PubMedCrossRefGoogle Scholar
  38. 38.
    Chard D, Griffin CM, McLean MA, Kapellar P, Kapoor R, Thompson AJ, Miller DH. Brain metabolite changes in cortical grey matter and normal appearing white matter in clinically early relapsing remitting multiple sclerosis.Brain 125: 2342–2352, 2002.PubMedCrossRefGoogle Scholar
  39. 39.
    Kapeller P, Brex PA, Chard D, Dalton C, Griffin CM, McLean MA, Parker GJM, Thompson AJ, Miller DH. Quantitative 1H-MR spectroscopic imaging 14 years after presenting with a clinically isolated syndrome suggestive of MS.Mult Scler 8: 207–210, 2002.PubMedCrossRefGoogle Scholar
  40. 40.
    Dousset V, Brochet B, Cailee J-M, Petry K. MS lesions enhancement with ultrasmall particle iron oxide: the first phase II study.Rev Neurol 156(Suppl 3): 3S40, 2000.Google Scholar
  41. 41.
    Petzold A, Eikelenbomm MJ, Keir G, Lazeron RC, Polman CH, Uitdehaag B et al. Dynamic of axonal pathology in multiple sclerosis.Mult Scler 8(Suppl 1): S25, 2002.Google Scholar
  42. 42.
    Miller DH, Barkhof F, Frank JA, Parker GJM, Thompson AJ. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance.Brain 125: 1676–1695, 2002.PubMedCrossRefGoogle Scholar
  43. 43.
    Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients.Ann Neurol 48: 893–901, 2000.PubMedCrossRefGoogle Scholar
  44. 44.
    Molyneux PD, Kappos L, Polman C, Pozzilli C, Barkhof F, Filippi M et al. The effect of interferon β-1b treatment on MRI measures of cerebral atrophy in secondary progressive multiple sclerosis.Brain 123: 2256–2263, 2000.PubMedCrossRefGoogle Scholar
  45. 45.
    Simon JH, Jacobs LD, Campion MK, Rudick RA, Cookfair DL, Herndon RM et al. A longitudinal study of brain atrophy in relapsing multiple sclerosis.Neurology 53: 139–148, 1999.PubMedGoogle Scholar
  46. 46.
    Rovaris M, Inglese M, van Schijndel RA, Sormani MP, Rodegher M, Comi G, Filippi M. Sensitivity and reproducibility of volume change measurements of different brain portions on MR scans from patients with multiple sclerosis.J Neurol 247: 960–965, 2001.CrossRefGoogle Scholar
  47. 47.
    Plummer DL. DispImage: a display and analysis tool for medical images.Revista di Neuroradiologica 5: 489–495, 1992.Google Scholar
  48. 48.
    Losseff NA, Webb SL, O’Riordan JI, Page R, Wang L, Barker GJ et al. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression.Brain 119: 701–708, 1996a.PubMedCrossRefGoogle Scholar
  49. 49.
    Lycklama a Nijeholt GJ, van Walderveen MA, Castelijns JA, van Waesberghe JHTM, Polman C, Scheltens P et al. Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms.Brain 121: 687–697, 1998.CrossRefGoogle Scholar
  50. 50.
    Chard DT, Parker GJM, Griffin CM, Thompson AJ, Miller DH. The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology.J Magn Reson Imaging 15: 259–267, 2002.PubMedCrossRefGoogle Scholar
  51. 51.
    Ge Y, Grossman RI, Udupa JK, Wei L, Mannon LJ, Polansky M, Kolson DL. Brain atrophy in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis: longitudinal data analysis.Radiology 214: 665–670, 2000.PubMedGoogle Scholar
  52. 52.
    Udupa JK, Wei L, Samasekera S, Miki Y, van Buchem MA, Grossman RI. Multiple sclerosis lesion quantification using fuzzy connectedness principles.IEEE Trans Med Imaging 16: 598–609, 1997.PubMedCrossRefGoogle Scholar
  53. 53.
    Ashburner J, Friston K. Voxel-based morphometry—the methods.Neuroimage 11: 805–821, 2000.PubMedCrossRefGoogle Scholar
  54. 54.
    Pham DL, Prince JL. An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities.Patt Recog Let 20: 57–68, 1999.CrossRefGoogle Scholar
  55. 55.
    Smith S, de Stefano N, Jenkinson M, Matthews P. Normalized accurate measurement of longitudinal brain change.J Comput Assist Tomog 25: 466–475, 2001.CrossRefGoogle Scholar
  56. 56.
    Freeborough PA, Fox NC. Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images.J Comput Assist Tomogr 22: 838–843, 1998.PubMedCrossRefGoogle Scholar
  57. 57.
    Freeborough PA, Fox NC. The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI.IEEE Trans Med Imaging 16: 623–629, 1997.PubMedCrossRefGoogle Scholar
  58. 58.
    Chard DT, Griffin CM, Parker GJM, Kapoor R, Thompson AJ, Miller DH. Brain atrophy in clinically early relapsing-remitting multiple sclerosis.Brain 125: 327–337, 2002.PubMedCrossRefGoogle Scholar
  59. 59.
    Guttmann CRG, Warfield SK, Guimond A, Kikinis R, Albert MS, Jolesz FA, Weiner HL. Variability of brain atrophy estimates in multiple sclerosis (absract).Proc Int Soc Magn Reson Med 8: 1188, 2000.Google Scholar
  60. 60.
    Rudick RA, Fischer E, Lee J-C, Simon J, Jacobs L. Use of brain parencyhmal fraction to measure whole brain atrophy in relapsing-remitting MS.Neurology 53: 1698–1704, 1999.PubMedGoogle Scholar
  61. 61.
    O’Riordan JI, Thompson AJ, Kingsley DPE, MacManus DG, Kendall BE, Rudge P et al. The prognostic value of brain MRI in clinically isolated syndromes of the central nervous system: a 10 year follow-up.Brain 121: 495–503, 1998.PubMedCrossRefGoogle Scholar
  62. 62.
    Beck RW, Trobe JD, Moke PS, Gal RL, Xing D, Batti MD et al. High and low risk profiles for the development of multiple sclerosis within 10 years after optic neuritis: experience of the optic neuritis treatment trial.Arch Ophthalmol 121: 944–949, 2003.PubMedCrossRefGoogle Scholar
  63. 63.
    Dalton CM, Brex PA, Jenkins R, Fox NC, Miszkiel KM, Crum WR et al. Progressive ventricular enlargement in patients with clinically isolated syndromes is associated with the early development of multiple sclerosis.J Neurol Neurosurg Psychiatry 73: 141–147, 2002.PubMedCrossRefGoogle Scholar
  64. 64.
    Hickman SJ, Brex PA, Brierley CMH, Silver NC, Barker GJ, Scolding NJ et al. Detection of optic nerve atrophy following a single episode of unilateral optic neuritis by MRI using a fatsaturated short-echo fast FLAIR sequence.Neuroradiology 43: 123–128, 2001.PubMedCrossRefGoogle Scholar
  65. 65.
    de Stefano N, Matthews PM, Filippi M, Agosta F, De Luca M, Bartolozzi ML et al. Evidence of early cortical atrophy in MS: relevance to white matter changes and disability.Neurology 60: 1157–1162, 2003.PubMedGoogle Scholar
  66. 66.
    Jones CK, Riddehough A, Li DKB, Zhao GJ, Paty DW. MRI cerebral atrophy in relapsing remitting MS: results of the PRISMS trial.Neurology 56(Suppl 3): A379, 2001.Google Scholar
  67. 67.
    Gasperini C, Paolillo A, Giugni E, Galgani S, Bagnato F, Mainero C et al. MRI brain volume changes in relapsing remitting multiple sclerosis patients treated with interferon β-1a.Mult Scler 8: 119–123, 2002.PubMedCrossRefGoogle Scholar
  68. 68.
    Losseff NA, Wang L, Lai HM, Yoo DS, Gawne-Cain ML, McDonald WI et al. Progressive cerebral atrophy in multiple sclerosis. A serial study.Brain 119: 2009–2019, 1996b.PubMedCrossRefGoogle Scholar
  69. 69.
    Paolillo A, Coles AJ, Molyneux PD, Gawne-Cain ML, MacManus D, Barker GJ et al. Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody campath 1H.Neurology 53: 751–757, 1999.PubMedGoogle Scholar
  70. 70.
    Fisher E, Rudick RA, Simon JH, Cutter G, Baier M, Lee JC et al. Eight year follow-up study of brain atrophy in patients with MS.Neurology 59: 1412–1420, 2002.PubMedGoogle Scholar
  71. 71.
    Rovaris M, Comi G, Rocca M, Wolinsky J, Filippi M, and the European/Canadian Glatiramer Acetate Study Group. Short-term brain volume change in relapsing-remitting multiple sclerosis: effect of glatiramer acetate and implications.Brain 124: 1803–1812, 2001.PubMedCrossRefGoogle Scholar
  72. 72.
    Kalkers NF, Bergers L, Castelijns JA, van Walderveen MAA, Bot JCJ, Ader HJ, Polman CH, Barkhof F. Optimizing the association between disability and biological markers in MS.Neurology 57: 1253–1257, 2001.PubMedGoogle Scholar
  73. 73.
    Lin X, Tench CR, Turner B, Blumhardt LD, Constantinescu CS. Spinal cord atrophy and disability in multiple sclerosis over four years: application of a reproducible automated technique in monitoring disease progression in a cohort of the interferon β-1a (Rebif) treatment trial.J Neurol Neurosurg Psychiatry 74: 1090–1094, 2003.PubMedCrossRefGoogle Scholar
  74. 74.
    Stevenson VL, Miller DH, Leary SM, Rovaris M, Barkhof F, Brochet B et al. One year follow up study of primary and transitional progressive multiple sclerosis.J Neurol Neurosurg Psychiatry 68: 713–718, 2000.PubMedCrossRefGoogle Scholar
  75. 75.
    Ingle GT, Stevenson VL, Miller DH, Thompson AJ. Primary progressive multiple sclerosis: a 5-year clinical and MR study. Brain 2003, in press.Google Scholar
  76. 76.
    Kalkers NF, Barkhof F, Bergers E, van Schijndel R, Polman CH. The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis.Mult Scler 8: 532–533, 2002.PubMedCrossRefGoogle Scholar
  77. 77.
    Coles AJ, Wing MG, Molyneux P, Paolillo A, Davie CM, Hale G et al. Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis.Ann Neurol 46: 296–304, 1999.PubMedCrossRefGoogle Scholar
  78. 78.
    Rice GPA for the Cladribine Clinical Study Group, Filippi M, Comi G, for the Cladribine MRI Study Group. Cladribine and progressive MS. Clinical and MRI outcomes of a multicenter controlled trial.Neurology 54: 1145–1154, 2000.PubMedGoogle Scholar
  79. 79.
    Filippi M, Rovaris M, Iannucci G, Mennea S, Sormani MP, Comi G. Whole brain volume changes in progressive MS patients treated with cladribine.Neurology 55: 1714–1718, 2000.PubMedGoogle Scholar
  80. 80.
    Fu L, Matthews PM, De Stefano N, Worsley KJ, Narayanan S, Francis GS et al. Imaging axonal damage of normal-appearing white matter in multiple sclerosis.Brain 121: 103–113, 1998.PubMedCrossRefGoogle Scholar
  81. 81.
    Leary S, Davie C, Parker G, Stevenson VL, Wang LQ, Barker GJ et al. 1H magnetic resonance spectroscopy of normal appearing white matter in primary progressive multiple sclerosis.J Neurol 246: 1023–1026, 1999.PubMedCrossRefGoogle Scholar
  82. 82.
    Davie C, Barker G, Thompson A, Tofts P, McDonald WI, Miller DH. H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis.J Neurol Neurosurg Psychiatry 63: 736–742, 1997.PubMedCrossRefGoogle Scholar
  83. 83.
    Sarchielli P, Presciutti O, Pelliciolli GP, Tarducci R, Gobbi G, Chiarini P et al. Absolute quantification of brain metabolites by proton magnetic spectroscopy of normal appearing white matter of patients with multiple sclerosis.Brain 122: 513–522, 1999.PubMedCrossRefGoogle Scholar
  84. 84.
    Davie C, Barker GJ, Webb S, Tofts PS, Thompson AJ, Harding AE, McDonald WI, Miller DH. Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss.Brain 118: 1583–1592, 1995.PubMedCrossRefGoogle Scholar
  85. 85.
    Pelletier D, Nelson SJ, Oh J, Antel JP, Kita M, Zamvil SS, Goodkin DE. MRI lesion volume heterogeneity in primary progressive MS in relation with axonal damage and brain atrophy.J Neurol Neurosurg Psychiatry 74: 950–952, 2003.PubMedCrossRefGoogle Scholar
  86. 86.
    Gonen O, Catalaa I, Babb JS, Ge Y, Mannon LJ, Kolson DL, Grossman RI. Total brain N-acetylaspartate: a new measure of disease load in MS.Neurology 54: 15–19, 2000.PubMedGoogle Scholar
  87. 87.
    Filippi M, Bozzali M, Rovaris M, Gonen O, Kesavadas C, Ghezzi A et al. Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis.Brain 126: 433–437, 2003.PubMedCrossRefGoogle Scholar
  88. 88.
    Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra.Magn Reson Med 30: 672–679, 1993.PubMedCrossRefGoogle Scholar
  89. 89.
    Narayanan S, De Stefano N, Francis GS, Arnouetelis R, Caramanous Z, Collins LD et al. Axonal metabolic recovery in multiple sclerosis patients treated with interferon β-1b.J Neurol 249: 979–986, 2001.CrossRefGoogle Scholar
  90. 90.
    Parry A, Corkill R, Blamire AM, Palace J, Narayanan S, Arnold D et al. β-interferon does not always slow the progression of axonal injury in multiple sclerosis.J Neurol 250: 171–178, 2003.PubMedCrossRefGoogle Scholar
  91. 91.
    Parker GJ, Wheeler-Kingshott CA, Barker GJ. Estimating distributed anatomical brain connectivity using fast marching methods and diffusion tensor imaging.IEEE Trans Med Imaging 21: 505–512, 2002.PubMedCrossRefGoogle Scholar
  92. 92.
    Ciccarelli O, Werring DJ, Barker GJ, Griffin CM, Wheeler-Kingshott CAM, Miller DH, Thompson AJ. A study of the mechanisms of normal-appearing white matter damage in multiple sclerosis using diffusion tensor imaging: evidence of Wallerian degeneration.J Neurol 250: 287–292, 2003.PubMedCrossRefGoogle Scholar
  93. 93.
    Barkhof F, Bruck W, de Groot JC, Bergers E, Hulsof S, Guerts J et al. Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance.Arch Neurol 60: 1073–1081, 2003.PubMedCrossRefGoogle Scholar
  94. 94.
    van Walderveen MA, Kamphorst W, Scheltens P, van Waesberghe JH, Ravid R, Valk J et al. Histopathological correlate of hypointense lesions on T1-weighted spin echo MRI in multiple sclerosis.Neurology 50: 1282–1288, 1998.PubMedGoogle Scholar
  95. 95.
    O’Riordan JI, Gawne-Cain M, Coles A, Wang L, Compston DAS, Miller DH. T1 hypointense lesion load in secondary progressive multiple sclerosis: a comparison of pre versus post contrast loads and of manual versus semi automated threshold techniques for lesion segmentation.Mult Scler 4: 408–412, 1998.PubMedGoogle Scholar
  96. 96.
    Filippi M, Rovaris M, Rocca MA, Sormani MP, Wolinsky JS, Comi G et al. Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes”.Neurology 57: 731–733, 2001.PubMedGoogle Scholar
  97. 97.
    Dalton CM, Miszkiel KA, Barker GJ, Pepple TI, Panzara M, Yang M et al. Effect of natalizumab on conversion of gadolinium enhancing lesions to T1 hypointense lesions in relapsing multiple sclerosis.J Neurol 2004 (in press)Google Scholar
  98. 98.
    Brex PA, Molyneux PD, Smiddy P, Barkhof F, Filippi M, Yousry TA et al. The effect of interferon β-1b on the size and evolution of enhancing lesions in secondary progressive MS.Neurology 57: 2185–2190, 2001.PubMedGoogle Scholar
  99. 99.
    Filippi M, Iannucci G, Tortorella C, Minicucci L, Horsfield MA, Colombo B, Sormani MP, Comi G. Comparison of MS clinical phenotypes using conventional and magnetization transfer MRI.Neurology 52: 588–594, 1999.PubMedGoogle Scholar
  100. 100.
    Traboulsee A, Dehmeshki J, Peters KR, Griffin CM, Brex PA, Silver N et al. Disability in multiple sclerosis is related to normal appearing brain tissue MTR histogram abnormalities.Mult Scler 9: 566–573, 2003.PubMedCrossRefGoogle Scholar
  101. 101.
    Miller DH, Thompson AJ, Filippi M. Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis.J Neurol 250: 1403–1419, 2003.CrossRefGoogle Scholar
  102. 102.
    Grimaud J, Millar J, Thorpe JW, Moseley IF, McDonald WI, Miller DH. Signal intensity on MRI of basal ganglia in multiple sclerosis.J Neurol Neurosurg Psychiatry 59: 306–308, 1995.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2004

Authors and Affiliations

  1. 1.Multiple Sclerosis NMR Research Unit, Department of NeuroinflammationInstitute of NeurologyLondonUK

Personalised recommendations