, Volume 1, Issue 2, pp 243–254

Neuroimaging in Parkinson’s disease



In this review, the potential role of positron emission tomography and single photon emission computed tomography as biological markers for diagnosing and following the progression of Parkinson’s disease (PD) is discussed. Their value for assessing the efficacy of putative neuroprotective agents in PD and for revealing the pharmacological changes underlying the symptomatology and complications of this disorder is also considered. It is concluded that in the future functional imaging will provide a valuable adjunct to clinical assessment when judging the efficacy of putative neuroprotective approaches to PD.

Key Words

Positron emission tomography SPECT Parkinson’s disease dopamine neuroprotection progression 


  1. 1.
    Hu MT, White SJ, Herlihy AH et al. A comparison of (18)F-dopa PET and inversion recovery MRI in the diagnosis of Parkinson’s disease.Neurology 56: 1195–1200, 2001.PubMedGoogle Scholar
  2. 2.
    Hutchinson M, Raff U. Structural changes of the substantia nigra in Parkinson’s disease as revealed by MR imaging.AJNR Am J Neuroradiol 21: 697–701, 2000.PubMedGoogle Scholar
  3. 3.
    Schrag A, Good CD, Miszkiel K et al. Differentiation of atypical parkinsonian syndromes with routine MRI.Neurology 54: 697–702, 2000.PubMedGoogle Scholar
  4. 4.
    Schulz JB, Skalej M, Wedekind D et al. Magnetic resonance imaging-based volumetry differentiates idiopathic Parkinson’s syndrome from multiple system atrophy and progressive supranuclear palsy.Ann Neurol 45: 65–74, 1999.PubMedCrossRefGoogle Scholar
  5. 5.
    Seppi K, Schocke MF, Esterhammer R et al. Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy.Neurology 60: 922–927, 2003.PubMedGoogle Scholar
  6. 6.
    Jellinger K. The pathology of parkinsonism. In: Movement disorders 2 (Marsden CD, Fahn S, eds), pp 124–165. Ed 1. London: Butterworths, 1987.Google Scholar
  7. 7.
    Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity.Brain 114: 2283–2301, 1991.PubMedCrossRefGoogle Scholar
  8. 8.
    Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease.N Engl J Med 318: 876–880, 1988.PubMedCrossRefGoogle Scholar
  9. 9.
    Braak H, Tredici KD, Rub U et al. Staging of brain pathology related to sporadic Parkinson’s disease.Neurobiol Aging 24: 197–211, 2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Jellinger KA, Seppi K, Wenning GK, Poewe W. Impact of coexistent Alzheimer pathology on the natural history of Parkinson’s disease.J Neural Transm 109: 329–339, 2002.PubMedCrossRefGoogle Scholar
  11. 11.
    McKeith IG, Galasko D, Kosaka K et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop.Neurology 47: 1113–1124, 1996.PubMedGoogle Scholar
  12. 12.
    Morrish PK, Sawle GV, Brooks DJ. Clinical and [18F]dopa PET findings in early Parkinson’s disease.J Neurol Neurosurg Psychiatry 59: 597–600, 1995.PubMedCrossRefGoogle Scholar
  13. 13.
    Rakshi JS, Uema T, Ito K et al. Frontal, striatal, and midbrain dopaminergic function in early and advanced Parkinson’s disease: a 3D 18F-dopa PET study.Brain 122: 1637–1650, 1999.PubMedCrossRefGoogle Scholar
  14. 14.
    Brooks DJ, Ibañez V, Sawle GV et al. Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy.Ann Neurol 28: 547–555, 1990.PubMedCrossRefGoogle Scholar
  15. 15.
    Leenders KL, Salmon EP, Tyrrell P et al. The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease.Arch Neurol 47: 1290–1298, 1990.PubMedGoogle Scholar
  16. 16.
    Bernheimer H, Birkmayer W, Hornykiewicz O et al. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological, and neurochemical correlations.J Neurol Sci 20: 415–455, 1973.PubMedCrossRefGoogle Scholar
  17. 17.
    Lindvall O, Bjorklund A. Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway.Brain Res 172: 169–173, 1979.PubMedCrossRefGoogle Scholar
  18. 18.
    Whone AL, Moore RY, Piccini P, Brooks DJ. Plasticity in the nigropallidal pathway in Parkinson’s disease: an 18F-dopa PET study.Ann Neurol 53: 206–213, 2003.PubMedCrossRefGoogle Scholar
  19. 19.
    Frost JJ, Rosier AJ, Reich SG et al. Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson’s disease.Ann Neurol 34: 423–431, 1993.PubMedCrossRefGoogle Scholar
  20. 20.
    Rinne JO, Bergman J, Ruotinnen H et al. Striatal uptake of a novel PET ligand, [18F]b-CFT, is reduced in early Parkinson’s disease.Synapse 31: 119–124, 1999.PubMedCrossRefGoogle Scholar
  21. 21.
    Guttman M, Burkholder J, Kish SJ et al. [11C]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson’s disease: implications for the symptomatic threshold.Neurology 48: 1578–1583, 1997.PubMedGoogle Scholar
  22. 22.
    Marek K, Seibyl JP, Zoghbi SS et al. [I-123] β-CIT SPECT imaging demonstrates bilateral loss of dopamine transporters in hemiparkinsons disease.Neurology 46: 231–237, 1996.PubMedGoogle Scholar
  23. 23.
    Benamer HTS, Patterson J, Wyper DJ et al. Correlation of Parkinson’s disease severity and duration with I-123-FP-CIT SPECT striatal uptake.Movement Disorders 15: 692–698, 2000.PubMedCrossRefGoogle Scholar
  24. 24.
    Benamer TS, Patterson J, Grosset DG et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT imaging: the [123I]-FP-CIT study group.Mov Disord 15: 503–510, 2000.PubMedCrossRefGoogle Scholar
  25. 25.
    Fischman AJ, Bonab AA, Babich JW et al. [C-11, I-127] Altropane: a highly selective ligand for PET imaging of dopamine transporter sites.Synapse 39: 332–342, 2001.PubMedCrossRefGoogle Scholar
  26. 26.
    Mozley PD, Schneider JS, Acton PD et al. Binding of [Tc-99m]TRODAT-1 to dopamine transporters in patients with Parkinson’s disease and in healthy volunteers.J Nucl Med 41: 584–589, 2000.PubMedGoogle Scholar
  27. 27.
    Vingerhoets FJG, Schulzer M, Caine DB, Snow BJ. Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion?Ann Neurol 41: 58–64, 1997.PubMedCrossRefGoogle Scholar
  28. 28.
    Otsuka M, Ichiya Y, Kuwabara Y et al. Differences in the reduced 18F-dopa uptakes of the caudate and the putamen in Parkinson’s disease: correlations with the three main symptoms.J Neurol Sci 136: 169–173, 1996.PubMedCrossRefGoogle Scholar
  29. 29.
    Tatsch K, Schwarz J, Mozley PD et al. Relationship between clinical features of Parkinson’s disease and presynaptic dopamine transporter binding assessed with [I-123]IPT and SPECT.Eur J Nucl Med 24: 415–421, 1997.PubMedGoogle Scholar
  30. 30.
    Lee CS, Samii A, Sossi V et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease.Ann Neurol 47: 493–503, 2000.PubMedCrossRefGoogle Scholar
  31. 31.
    Doder M, Rabiner EA, Turjanski N et al. Tremor in Parkinson’s disease and serotonergic dysfunction: an (11)C-WAY 100635 PET study.Neurology 60: 601–605, 2003.PubMedGoogle Scholar
  32. 32.
    Golbe LI. The genetics of Parkinson’s disease: a reconsideration.Neurology 40(Suppl 3): 7–16, 1990.PubMedGoogle Scholar
  33. 33.
    Piccini P, Morrish PK, Turjanski N et al. Dopaminergic function in familial Parkinson’s disease: a clinical and 18F-dopa PET study.Ann Neurol 41: 222–229, 1997.PubMedCrossRefGoogle Scholar
  34. 34.
    Piccini P, Burn DJ, Ceravalo R et al. The role of inheritance in sporadic Parkinson’s disease: evidence from a longitudinal study of dopaminergic function in twins.Ann Neurol 45: 577–582, 1999.PubMedCrossRefGoogle Scholar
  35. 35.
    Khan NL, Brooks DJ, Pavese N et al. Progression of nigrostriatal dysfunction in a parkin kindred: an [18F]dopa PET and clinical study.Brain 125: 2248–2256, 2002.PubMedCrossRefGoogle Scholar
  36. 36.
    Hilker R, Klein C, Ghaemi M et al. Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene.Ann Neurol 49: 367–376, 2001.PubMedCrossRefGoogle Scholar
  37. 37.
    Scherfler C, Khan NL, Pavese N et al. Striatal and extrastriatal PET measurements of dopa metabolism and D2 receptor status in patients with parkin gene mutations.Neurology 58(Suppl 3): A201, 2002.Google Scholar
  38. 38.
    Banati RB, Myers R, Kreutzberg GW. PK (‘peripheral benzodiazepine’)-binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia.J Neurocytol 26: 77–82, 1997.PubMedCrossRefGoogle Scholar
  39. 39.
    McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains.Neurology 38: 1285–1291, 1988.PubMedGoogle Scholar
  40. 40.
    Gerhard A, Banati RB, Cagnin A, Brooks DJ. In vivo imaging of activated microglia with [C-11]PK11195 positron emission tomography (PET) in idiopathic and atypical Parkinson’s disease.Neurology 56(Suppl 3): A270, 2001.Google Scholar
  41. 41.
    Snow BJ, Tooyama I, McGeer EG et al. Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels.Ann Neurol 34: 324–330, 1993.PubMedCrossRefGoogle Scholar
  42. 42.
    Pate BD, Kawamata T, Yamada T et al. Correlation of striatal fluorodopa uptake in the MPTP monkey with dopaminergic indices.Ann Neurol 34: 331–338, 1993.PubMedCrossRefGoogle Scholar
  43. 43.
    Rakshi JS, Bailey DL, Morrish PK, Brooks DJ. Implementation of 3D acquisition, reconstruction, and analysis of dynamic [18F] Fluorodopa studies. In: Quantification of brain function using PET (Myers R, Cunningham V, Bailey D, Jones T, eds), pp 82–87. San Diego: Academic Press, 1996.CrossRefGoogle Scholar
  44. 44.
    Ceravolo R, Piccini P, Bailey DL et al. 18F-dopa PET evidence that tolcapone acts as a central COMT inhibitor in Parkinson’s disease.Synapse 43: 201–207, 2002.PubMedCrossRefGoogle Scholar
  45. 45.
    Turjanski N, Lees AJ, Brooks DJ. Striatal dopaminergic receptor dysfunction in patients with restless legs syndrome: 18F-dopa and 11C-raclopride PET studies.Neurology 52: 932–937, 1999.PubMedGoogle Scholar
  46. 46.
    Innis RB, Marek KL, Sheff K et al. Effect of treatment with L-dopa/carbidopa or L-selegiline on striatal dopamine transporter SPECT imaging with [I-123]β-CIT.Mov Disord 14: 436–442, 1999.PubMedCrossRefGoogle Scholar
  47. 47.
    Vingerhoets FJG, Snow BJ, Lee CS et al. Longitudinal fluorodopa positron emission tomographic studies of the evolution of idiopathic parkinsonism.Ann Neurol 36: 759–764, 1994.PubMedCrossRefGoogle Scholar
  48. 48.
    Morrish PK, Rakshi JS, Sawle GV, Brooks DJ. Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET.J Neurol Neurosurg Psychiatry 64: 314–319, 1998.PubMedCrossRefGoogle Scholar
  49. 49.
    Nurmi E, Ruottinen HM, Bergman J et al. Rate of progression in Parkinson’s disease: a 6-[18F]fluoro-L-dopa PET study.Mov Disord 16: 608–615, 2001.PubMedCrossRefGoogle Scholar
  50. 50.
    Nurmi E, Ruottinen HM, Kaasinen V et al. Progression in Parkinson’s disease: a positron emission tomography study with a dopamine transporter ligand.Ann Neurol 47: 804–808, 2000.PubMedCrossRefGoogle Scholar
  51. 51.
    Marek K, Innis R, van Dyck C et al. [123I]β-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression.Neurology 57: 2089–2094, 2001.PubMedGoogle Scholar
  52. 52.
    Winogrodzka A, Bergmans P, Booij J et al. [123I]FP-CIT SPECT is a useful method to monitor the rate of dopaminergic degeneration in early-stage Parkinson’s disease.J Neural Transm 108: 1011–1019, 2001.PubMedCrossRefGoogle Scholar
  53. 53.
    Schwarz J, Tatsch K, Linke R et al. Measuring the decline of dopamine transporter binding in patients with Parkinson’s disease using 123I-IPT and SPECT.Neurology 48(Suppl 2): A208, 1997.Google Scholar
  54. 54.
    Olanow CW, Jenner P, Brooks D. Dopamine agonists and neuroprotection in Parkinson’s disease.Ann Neurol 44(Suppl 1): S167-S174, 1998.PubMedGoogle Scholar
  55. 55.
    Whone AL, Watts RL, Stoessl J et al. Slower progression of PD with ropinirol versus L-dopa: the REAL-PET study.Ann Neurol 54: 93–101, 2003.PubMedCrossRefGoogle Scholar
  56. 56.
    Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa Parkinson disease progression.JAMA 287: 1653–1661, 2002.CrossRefGoogle Scholar
  57. 57.
    Ahlskog JE. Slowing Parkinson’s disease progression: recent dopamine agonist trials.Neurology 60: 381–389, 2003.PubMedGoogle Scholar
  58. 58.
    Hadjiconstantinou M, Wemlinger TA, Sylvia CP et al. Aromatic L-amino acid decarboxylase activity of mouse striatum is modulated via dopamine receptors.J Neurochem 60: 2175–2180, 1993.PubMedCrossRefGoogle Scholar
  59. 59.
    Parkinson Study Group. Does levodopa slow or hasten the rate of progression of Parkinson disease? The results of the ELLDOPA trial.Neurology 60(Suppl 1): A80–81, 2003.Google Scholar
  60. 60.
    Lindvall O. Cerebral implantation in movement disorders: state of the art.Mov Disord 14: 201–205, 1999.PubMedCrossRefGoogle Scholar
  61. 61.
    Piccini P, Brooks DJ, Bjorklund A et al. Dopamine release from nigral transplants visualised in vivo in a Parkinson’s patient.Nat Neurosci 2: 1137–1140, 1999.PubMedCrossRefGoogle Scholar
  62. 62.
    Wenning GK, Odin P, Morrish PK et al. Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease.Ann Neurol 42: 95–107, 1997.PubMedCrossRefGoogle Scholar
  63. 63.
    Brundin P, Pogarell O, Hagell P et al. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease.Brain 123: 1380–1390, 2000.PubMedCrossRefGoogle Scholar
  64. 64.
    Remy P, Samson Y, Hantraye P et al. Clinical correlates of [18F]fluorodopa uptake in five grafted parkinsonian patients.Ann Neurol 38: 580–588, 1995.PubMedCrossRefGoogle Scholar
  65. 65.
    Hauser RA, Freeman TB, Snow BJ et al. Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease.Arch Neurol 56: 179–187, 1999.PubMedCrossRefGoogle Scholar
  66. 66.
    Kordower JH, Freeman TB, Chen EY et al. Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson’s disease.Mov Disord 13: 383–393, 1998.PubMedCrossRefGoogle Scholar
  67. 67.
    Freed CR, Greene PE, Breeze RE et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease.N Engl J Med 344: 710–719, 2001.PubMedCrossRefGoogle Scholar
  68. 68.
    Olanow CW, Goetz CG, Kordower JH et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease.Ann Neurol 54: 403–414, 2003.PubMedCrossRefGoogle Scholar
  69. 69.
    Gill SS, Patel NK, Hotton GR et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease.Nat Med 9: 589–595, 2003.PubMedCrossRefGoogle Scholar
  70. 70.
    De La Fuente-Fernandez R, Pal PK, Vingerhoets FJG et al. Evidence for impaired presynaptic dopamine function in parkinsonian patients with motor fluctuations.J Neural Transm 107: 49–57, 2000.PubMedCrossRefGoogle Scholar
  71. 71.
    Playford ED, Brooks DJ. In vivo and in vitro studies of the dopaminergic system in movement disorders.Cerebrovasc Brain Metab Rev 4: 144–171, 1992.PubMedGoogle Scholar
  72. 72.
    Rinne UK, Laihinen A, Rinne JO et al. Positron emission tomography demonstrates dopamine D2 receptor supersensitivity in the striatum of patients with early Parkinson’s disease.Mov Disord 5: 55–59, 1990.PubMedCrossRefGoogle Scholar
  73. 73.
    Antonini A, Schwarz J, Oertel WH et al. [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson’s disease: influence of L-dopa and lisuride therapy on striatal dopamine D2-receptors.Neurology 44: 1325–1329, 1994.PubMedGoogle Scholar
  74. 74.
    Turjanski N, Lees AJ, Brooks DJ. PET studies on striatal dopaminergic receptor binding in drug naive and L-dopa treated Parkinson’s disease patients with and without dyskinesia.Neurology 49: 717–723, 1997.PubMedGoogle Scholar
  75. 75.
    Kishore A, De la Fuente-Fernández R, Snow BJ et al. Levodopainduced dyskinesias in idiopathic parkinsonism (IP): a simultaneous PET study of dopamine D1 and D2 receptors.Neurology 48: A327, 1997.Google Scholar
  76. 76.
    Breier A, Su TP, Saunders R et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from novel positron emission tomography method.Proc Natl Acad Sci USA 94: 2569–2574, 1997.PubMedCrossRefGoogle Scholar
  77. 77.
    Torstenson R, Hartvig P, Långström B et al. Differential effects of levodopa on dopaminergic function in early and advanced Parkinson’s disease.Ann Neurol 41: 334–340, 1997.PubMedCrossRefGoogle Scholar
  78. 78.
    De La Fuente-Fernandez R, Lu JQ, Sossi V et al. Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson’s disease: PET evidence of increased dopamine turnover.Ann Neurol 49: 298–303, 2001.PubMedCrossRefGoogle Scholar
  79. 79.
    Henry B, Brotchie JM. Potential of opioid antagonists in the treatment of levodopa-induced dyskinesias in Parkinson’s disease.Drugs Aging 9: 149–158, 1996.PubMedCrossRefGoogle Scholar
  80. 80.
    Nisbet AP, Foster OJF, Kingsbury A et al. Preproenkephalin and preprotachykinin messenger-RNA expression in normal human basal ganglia and in Parkinson’s disease.Neuroscience 66: 361–376, 1995.PubMedCrossRefGoogle Scholar
  81. 81.
    Jolkkonen J, Jenner P, Marsden CD. L-dopa reverses altered gene expression of substance P but not enkephalin in the caudate-putamen of common marmosets treated with MPTP.Mol Brain Res 32: 297–307, 1995.PubMedCrossRefGoogle Scholar
  82. 82.
    Lavoie B, Parent A, Bedard PJ. Effects of dopamine denervation on striatal peptide expression in parkinsonian monkeys.Can J Neurol Sci 18: 373–375, 1991.PubMedGoogle Scholar
  83. 83.
    Piccini P, Weeks RA, Brooks DJ. Opioid receptor binding in Parkinson’s patients with and without levodopa-induced dyskinesias.Ann Neurol 42: 720–726, 1997.PubMedCrossRefGoogle Scholar
  84. 84.
    Whone AL, Rabiner EA, Arahata Y et al. Reduced substance P binding in Parkinson’s disease complicated by dyskinesias: an F-18-L829165 PET study.Neurology 58(Suppl 3): A488-A489, 2002.Google Scholar
  85. 85.
    Korczyn AD. Dementia in Parkinson’s disease.J Neurol 248(Suppl 3): III1–4, 2001.PubMedGoogle Scholar
  86. 86.
    Miletich RS, Chan T, Gillespie M et al. Contralateral basal ganglia metabolism is abnormal in hemiparkinsonian patients. An FDG-PET study.Neurology 38: S260, 1988.Google Scholar
  87. 87.
    Wolfson LI, Leenders KL, Brown LL, Jones T. Alterations of regional cerebral blood flow and oxygen metabolism in Parkinson’s disease.Neurology 35: 1399–1405, 1985.PubMedGoogle Scholar
  88. 88.
    Eidelberg D, Moeller JR, Dhawan V et al. The metabolic topography of parkinsonism.J Cereb Blood Flow Metab 14: 783–801, 1994.PubMedCrossRefGoogle Scholar
  89. 89.
    Eidelberg D, Moeller JR, Ishikawa T et al. Assessment of disease severity in Parkinsonism with fluorine-18-fluorodeoxyglucose and PET.J Nucl Med 36: 378–383, 1995.PubMedGoogle Scholar
  90. 90.
    Peppard RF, Martin WRW, Guttman M et al. The relationship of cerebral glucose metabolism to cognitive deficits in Parkinson’s disease.Neurology 38(Suppl 1): 364, 1988.Google Scholar
  91. 91.
    Kuhl DE, Metter EJ, Benson DF. Similarities of cerebral glucose metabolism in Alzheimer’s and Parkinsonian dementia.J Cereb Blood Flow Metab 5: S169-S170, 1985.Google Scholar
  92. 92.
    Bohnen NI, Minoshima S, Giordani B et al. Motor correlates of occipital glucose hypometabolism in Parkinson’s disease without dementia.Neurology 52: 541–546, 1999.PubMedGoogle Scholar
  93. 93.
    Hu MT, Taylor-Robinson SD, Chaudhuri KR et al. Cortical dysfunction in non-demented Parkinson’s disease patients: a combined (31)P-MRS and (18)FDG-PET study.Brain 123: 340–352, 2000.PubMedCrossRefGoogle Scholar
  94. 94.
    Walker Z, Costa DC, Walker RW et al. Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand.J Neurol Neurosurg Psychiatry 73: 134–140, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2004

Authors and Affiliations

  1. 1.Medical Research Council Clinical Sciences Center and Division of Neuroscience, Faculty of Medicine, Imperial CollegeHammersmith HospitalLondonUK

Personalised recommendations