, Volume 1, Issue 2, pp 213–225 | Cite as

Cerebrospinal fluid protein biomarkers for Alzheimer’s disease

  • Kaj Blennow


The introduction of acetylcholine esterase (AChE) inhibitors as a symptomatic treatment of Alzheimer’s disease (AD) has made patients seek medical advice at an earlier stage of the disease. This has highlighted the importance of diagnostic markers for early AD. However, there is no clinical method to determine which of the patients with mild cognitive impairment (MCI) will progress to AD with dementia, and which have a benign form of MCI without progression. In this paper, the performance of cerebrospinal fluid (CSF) protein biomarkers for AD is reviewed. The diagnostic performance of the three biomarkers, total tau, phospho-tau, and the 42 amino acid form of β-amyloid have been evaluated in numerous studies and their ability to identify incipient AD in MCI cases has also been studied. Some candidate AD biomarkers including ubiquitin, neurofilament proteins, growth-associated protein 43 (neuromodulin), and neuronal thread protein (AD7c) show interesting results but have been less extensively studied. It is concluded that CSF biomarkers may have clinical utility in the differentiation between AD and several important differential diagnoses, including normal aging, depression, alcohol dementia, and Parkinson’s disease, and also in the identification of Creutzfeldt-Jakob disease in cases with rapidly progressive dementia. Early diagnosis of AD is not only of importance to be able to initiate symptomatic treatment with AChE inhibitors, but will be the basis for initiation of treatment with drugs aimed at slowing down or arresting the degenerative process, such as γ-secretase inhibitors, if these prove to affect AD pathology and to have a clinical effect.

Key Words

Alzheimer’s disease cerebrospinal fluid biomarker tau phosphorylated tau β-amyloid 


  1. 1.
    Blennow K, Skoog I. Genetic testing for Alzheimer’s disease: how close is reality?Curr Opin Psychiatry 12: 487–493, 1999.Google Scholar
  2. 2.
    Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people.J Neurol Sci 11: 205–242, 1970.PubMedGoogle Scholar
  3. 3.
    Davies L, Wolska B, Hilbich C, Multhaup G, Martins R, Simms G et al. A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques.Neurology 38: 1688–1693, 1988.PubMedGoogle Scholar
  4. 4.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task force on Alzheimer’s disease.Neurology 34: 939–944, 1984.PubMedGoogle Scholar
  5. 5.
    Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome.Arch Neurol 56: 303–308, 1999.PubMedGoogle Scholar
  6. 6.
    DeCarli C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment.Lancet Neurol 2: 15–21, 2003.PubMedGoogle Scholar
  7. 7.
    Blennow K, Wallin A. Clinical heterogeneity of probable Alzheimer’s disease.J Geriatr Psychiatry Neurol 5: 106–113, 1992.PubMedGoogle Scholar
  8. 8.
    Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain.EMBO J 8: 393–399, 1989.PubMedGoogle Scholar
  9. 9.
    Buée L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders.Brain Res Brain Res Rev 33: 95–130, 2000.PubMedGoogle Scholar
  10. 10.
    Iqbal K, Alonso Adel C, El-Akkad E, Gong CX, Haque N et al. Pharmacological targets to inhibit Alzheimer neurofibrillary degeneration.J Neural Transm Suppl 62: 309–319, 2002.PubMedGoogle Scholar
  11. 11.
    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology.Proc Natl Acad Sci USA 83: 4913–4917, 1986.PubMedGoogle Scholar
  12. 12.
    Iqbal K, Alonso AD, Gondal JA, Gong CX, Haque N, Khatoon S et al. Mechanism of neurofibrillary degeneration and pharmacologic therapeutic approach.J Neural Transm Suppl 59: 213–222, 2000.PubMedGoogle Scholar
  13. 13.
    Vandermeeren M, Mercken M, Vanmechelen E, Six J, van de Voorde A, Martin JJ et al. Detection of t proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay.J Neurochem 61: 1828–1834, 1993.PubMedGoogle Scholar
  14. 14.
    Blennow K, Wallin A, Ågren H, Spenger C, Siegfried J, Vanmechelen E. Tau protein in cerebrospinal fluid: a biochemical diagnostic marker for axonal degeneration in Alzheimer’s disease?Mol Chem Neuropathol 26: 231–245, 1995.PubMedGoogle Scholar
  15. 15.
    Vigo-Pelfrey C, Seubert P, Barbour R, Blomquist C, Lee M, Lee D et al. Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer’s disease.Neurology 45: 788–793, 1995.PubMedGoogle Scholar
  16. 16.
    Mori H, Hosoda K, Matsubara E, Nakamoto T, Furiya Y, Endoh R et al. Tau in cerebrospinal fluids: establishment of the sandwich ELISA with antibody specific to the repeat sequence in tau.NeurosciLett 186: 181–183, 1995.Google Scholar
  17. 17.
    Blennow K, Vanmechelen E, Hampel H. CSF total tau, Ab42 and phosphorylated tau protein as biomarkers for Alzheimer’s disease.Mol Neurobiol 24: 87–97, 2001.PubMedGoogle Scholar
  18. 18.
    Hesse C, Rosengren L, Vanmechelen E, Vanderstichele H, Jensen C, Davidsson P et al. Cerebrospinal fluid markers for Alzheimer’s disease evaluated after acute ischemic stroke.J Alzheimers Dis 2: 199–206, 2000.PubMedGoogle Scholar
  19. 19.
    Otto M, Wiltfang J, Tumani H, Zerr I, Lantsch M, Kornhuber J et al. Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease.Neurosci Lett 225: 210–212, 1997.PubMedGoogle Scholar
  20. 20.
    Andreasen N, Minthon L, Clarberg A, Davidsson P, Gottfries J, Vanmechelen E et al. Sensitivity, specificity and stability of CSF t-tau in AD in a community-based patient sample.Neurology 53: 1488–1494, 1999.PubMedGoogle Scholar
  21. 21.
    Vanmechelen E, Vanderstichele H, Davidsson P, Van Kerschaver E, Van Der Perre B, Sjogren M et al. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization.Neurosci Lett 285: 49–52, 2000.PubMedGoogle Scholar
  22. 22.
    Ishiguro K, Ohno H, Arai H, Yamaguchi H, Urakami K, Park JM et al. Phosphorylated tau in human cerebrospinal fluid is a diagnostic marker for Alzheimer’s disease.Neurosci Lett 270: 91–94, 1999.PubMedGoogle Scholar
  23. 23.
    Kohnken R, Buerger K, Zinkowski R, Miller C, Kerkman D, DeBernardis J et al. Detection of tau phosphorylated at threonine 231 in cerebrospinal fluid of Alzheimer’s disease patients.Neurosci Lett 287: 187–190, 2000.PubMedGoogle Scholar
  24. 24.
    Hu YY, He SS, Wang X, Duan QH, Grundke-Iqbal I, Iqbal K et al. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients: an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay.Am J Pathol 160: 1269–1278, 2002.PubMedGoogle Scholar
  25. 25.
    Hesse C, Rosengren L, Andreasen N, Davidsson P, Vanderstichele H, Vanmechelen E et al. Transient increase in CSF total tau but not phospho-tau after acute stroke.Neurosci Lett 297: 187–190, 2001.PubMedGoogle Scholar
  26. 26.
    Riemenschneider M, Wagenpfeil S, Vanderstichele H, Otto M, Wiltfang J, Kretzschmar H et al. Phospho-tau/total tau ratio in cerebrospinal fluid discriminates Creutzfeldt-Jakob disease from other dementias.Mol Psychiatry 8: 343–347, 2003.PubMedGoogle Scholar
  27. 27.
    Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer’s disease and Down syndrome.Proc Natl Acad Sci USA 82: 4245–4249, 1985.PubMedGoogle Scholar
  28. 28.
    Haas C, Selkoe DJ. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide.Cell 75: 1039–1042, 1993.Google Scholar
  29. 29.
    Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor.Nature 325: 733–736, 1987.PubMedGoogle Scholar
  30. 30.
    Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D et al. Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids.Nature 359: 325–327, 1992.PubMedGoogle Scholar
  31. 31.
    Van Nostrand WE, Wagner SL, Shankle WR, Farrow JS, Dick M, Rozemuller JM et al. Decreased levels of soluble amyloid β-protein precursor in cerebrospinal fluid of live Alzheimer disease patients.Proc Natl Acad Sci USA 89: 2551–2555, 1992.PubMedGoogle Scholar
  32. 32.
    Farlow M, Ghetti B, Benson MD, Farrow JS, van Nostrand WE, Wagner SL. Low cerebrospinal-fluid concentrations of soluble amyloid β-protein precursor in hereditary Alzheimer’s disease.Lancet 340: 453–454, 1992.PubMedGoogle Scholar
  33. 33.
    Tabaton M, Nunzi MG, Xue R, Usiak M, Autilio-Gambetti L, Gambetti P. Soluble amyloid β-protein is a marker of Alzheimer amyloid in brain but not in cerebrospinal fluid.Biochem Biophys Res Commun 200: 1598–1603, 1994.PubMedGoogle Scholar
  34. 34.
    van Gool WA, Kuiper MA, Walstra GJ, Wolters EC, Bolhuis PA. Concentrations of amyloid β-protein in cerebrospinal fluid of patients with Alzheimer’s disease.Ann Neurol 37: 277–279, 1995.PubMedGoogle Scholar
  35. 35.
    Motter R, Vigo-Pelfrey C, Kholodenko D, Barbour R, Johnson-Wood K, Galasko D et al. Reduction of β-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease.Ann Neurol 38: 643–648, 1995.PubMedGoogle Scholar
  36. 36.
    Southwick PC, Yamagata SK, Echols CL, Higson GJ, Neynaber SA, Parson RE et al. Assessment of amyloid β-protein in cerebrospinal fluid as an aid in the diagnosis of Alzheimer’s disease.J Neurochem 66: 259–265, 1996.PubMedGoogle Scholar
  37. 37.
    Jarrett JT, Berger EP, Lansbury PT. The carboxy terminus of the β-amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease.Biochemistry 32: 4693–4697, 1993.PubMedGoogle Scholar
  38. 38.
    Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43).Neuron 13: 45–53, 1994.PubMedGoogle Scholar
  39. 39.
    Tamaoka A, Kondo T, Odaka A, Sahara N, Sawamura N, Ozawa K et al. Biochemical evidence for the long-tail form (Aβ 1–42/43) of amyloid β protein as a seed molecule cerebral deposits of Alzheimer’s disease.Biochem Biophys Res Commun 205: 834–842, 1994.PubMedGoogle Scholar
  40. 40.
    Miller DL, Papayannopoulos IA, Styles J, Bobin SA, Lin YY, Biemann K, Iqbal K. Peptide composition of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease.Arch Biochem Biophys 301: 41–52, 1993.PubMedGoogle Scholar
  41. 41.
    Vanderstichele H, Blennow K, D’Heuvaert ND, Buyse MA, Wallin A, Andreasen N et al. Development of a specific diagnostic test for measurement of β-amyloid(1–42) in CSF. In:Progress in Alzheimer’s and Parkinson’s diseases (Fisher A, Hanin I, Yoshida M, eds), pp 773–778. New York: Plenum, 1998.Google Scholar
  42. 42.
    Mehta PD, Pirttila T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM. Plasma and cerebrospinal fluid levels of amyloid β proteins 1–40 and 1–42 in Alzheimer disease.Arch Neurol 57: 100–105, 2000.PubMedGoogle Scholar
  43. 43.
    Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH et al. Decreased β-amyloidl-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease.JAMA 289: 2094–2103, 2003.PubMedGoogle Scholar
  44. 44.
    Ida N, Hartmann T, Pantel J, Schroder J, Zerfass R, Forstl H et al. Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay.J Biol Chem 271: 22908–22914, 1996.PubMedGoogle Scholar
  45. 45.
    Schroder J, Pantel J, Ida N, Essig M, Hartmann T, Knopp MV et al. Cerebral changes and cerebrospinal fluid β-amyloid in Alzheimer’s disease: a study with quantitative magnetic resonance imaging.Mol Psychiatry 2: 505–507, 1997.PubMedGoogle Scholar
  46. 46.
    Jensen M, Schroder J, Blomberg M, Engvall B, Pantel J, Ida N et al. Cerebrospinal fluid A β42 is increased early in sporadic Alzheimer’s disease and declines with disease progression.Ann Neurol 45: 504–511, 1999.PubMedGoogle Scholar
  47. 47.
    Wiltfang J, Esselmann H, Bibl M, Smirnov A, Otto M, Paul S et al. Highly conserved and disease-specific patterns of carboxyterminally truncated Aβ peptides 1–37/38/39 in addition to 1–40/42 in Alzheimer’s disease and in patients with chronic neuroinflammation.J Neurochem 81: 481–496, 2002.PubMedGoogle Scholar
  48. 48.
    Lewczuk P, Esselmann H, Meyer M, Wollscheid V, Neumann M, Otto M et al. The amyloid-β (Aβ) peptide pattern in cerebrospinal fluid in Alzheimer’s disease: evidence of a novel carboxyterminally elongated Aβ peptide.Rapid Commun Mass Spectrom 17: 1291–1296, 2003.PubMedGoogle Scholar
  49. 49.
    Andreasen N, Hesse C, Davidsson P, Wallin A, Minthon L, Winblad B et al. Cerebrospinal fluid β-amyloid(1–42) in Alzheimer’s disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease.Arch Neurol 56: 673–680, 1999.PubMedGoogle Scholar
  50. 50.
    Sjögren M, Minthon L, Davidsson P, Granérus AK, Clarberg A, Vanderstichele H et al. CSF levels of tau, β-amyloidl-42 and GAP-43 in frontotemporal dementia, other types of dementia and normal aging.J Neural Transm 107: 563–579, 2000.PubMedGoogle Scholar
  51. 51.
    Otto M, Esselmann H, Schulz-Shaeffer W, Neumann M, Schroter A, Ratzka P et al. Decreased β-amyloidl-42 in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease.Neurology 54: 1099–1102, 2000.PubMedGoogle Scholar
  52. 52.
    Sjögren M, Davidsson P, Wallin A, Granerus AK, Grundström E, Askmark H et al. Decreased CSF β-amyloid42 in Alzheimer’s disease and amyotrophic lateral sclerosis may reflect mismetabolism of β-amyloid induced by separate mechanisms.Dement Geriatr Cogn Disord 13: 112–118, 2002.PubMedGoogle Scholar
  53. 53.
    Holmberg B, Johnels B, Blennow K, Rosengren L. Cerebrospinal fluid Aβ42 is reduced in multiple system atrophy but normal in Parkinson’s disease and progressive supranuclear palsy.Mov Disord 18: 186–190, 2003.PubMedGoogle Scholar
  54. 54.
    Strozyk D, Blennow K, White LR, Launer LJ. CSF Aβ42 levels correlate with amyloid-neuropathology in a population-based autopsy study.Neurology 60: 652–656, 2003.PubMedGoogle Scholar
  55. 55.
    Tamaoka A, Sawamura N, Fukushima T, Shoji S, Matsubara E, Shoji M et al. Amyloid β protein 42(43) in cerebrospinal fluid of patients with Alzheimer’s disease.J Neurol Sci 148: 41–45, 1997.PubMedGoogle Scholar
  56. 56.
    Kanai M, Matsubara E, Isoe K, Urakami K, Nakashima K, Arai H et al. Longitudinal study of cerebrospinal fluid levels of tau, A β1–40, and A β 1–42(43) in Alzheimer’s disease: a study in Japan.Ann Neurol 44: 17–26, 1998.PubMedGoogle Scholar
  57. 57.
    Shoji M, Matsubara E, Kanai M, Watanabe M, Nakamura T, Tomidokoro Y et al. Combination assay of CSF tau, Aβ 1–40 and Aβ 1–42(43) as a biochemical marker of Alzheimer’s disease.J Neurol Sci 158: 134–140, 1998.PubMedGoogle Scholar
  58. 58.
    Fukuyama R, Mizuno T, Mori S, Nakajima K, Fushiki S, Yanagisawa K. Age-dependent change in the levels of Aβ40 and Aβ42 in cerebrospinal fluid from control subjects, and a decrease in the ratio of Aβ42 to Aβ40 level in cerebrospinal fluid from Alzheimer’s disease patients.Eur Neurol 43: 155–160, 2000.PubMedGoogle Scholar
  59. 59.
    Vigo-Pelfrey C, Lee D, Keim P, Lieberburg I, Schenk DB. Characterization of β-amyloid peptide from human cerebrospinal fluid.J Neurochem 61: 1965–1968, 1993.PubMedGoogle Scholar
  60. 60.
    Sergeant N, Bombois S, Ghestem A, Drobecq H, Kostanjevecki V, Missiaen C et al. Truncated β-amyloid peptide species in pre-clinical Alzheimer’s disease as new targets for the vaccination approach.J Neurochem 85: 1581–1591, 2003.PubMedGoogle Scholar
  61. 61.
    Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease.Lancet Neurol 2: 605–613, 2003.PubMedGoogle Scholar
  62. 62.
    Arai H, Terajima M, Miura M, Higuchi S, Muramatsu T, Machida N et al. Tau in cerebrospinal fluid: a potential diagnostic marker in Alzheimer’s disease.Ann Neurol 38: 649–652, 1995.PubMedGoogle Scholar
  63. 63.
    Andreasen N, Vanmechelen E, Van de Voorde A, Davidsson P, Hesse C, Tarvonen S, Räihä I, Sourander L, Winblad B, Blennow K. Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer’s disease: a community-based follow-up study.J Neurol Neurosurg Psychiatry 64: 298–305, 1998.PubMedGoogle Scholar
  64. 64.
    Arai H, Satoh-Nakagawa T, Higuchi M, Morikawa Y, Miura M, Kawakami H, Seki H, Takase S, Sasaki H. No increase in cerebrospinal fluid tau protein levels in patients with vascular dementia.Neurosci Lett 256: 174–176, 1998.PubMedGoogle Scholar
  65. 65.
    Kurz A, Riemenschneider M, Buch K, Willoch F, Bartenstein P, Muller U et al. Tau protein in cerebrospinal fluid is significantly increased at the earliest stage of Alzheimer disease.Alzheimer Dis Assoc Disord 12: 372–377, 1998.PubMedGoogle Scholar
  66. 66.
    Nishimura T, Takeda M, Nakamura Y, Yosbida Y, Arai H, Sasaki H et al. Basic and clinical studies on the measurement of tau protein in cerebrospinal fluid as a biological marker for Alzheimer’s disease and related disorders: multicenter study in Japan.Methods Find Exp Clin Pharmacol 20: 227–235, 1998.PubMedGoogle Scholar
  67. 67.
    Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, De Deyn PP et al. Improved discrimination of AD patients using β-amyloid(l–42) and tau levels in CSF.Neurology 52: 1555–1562, 1999.PubMedGoogle Scholar
  68. 68.
    Maruyama M, Arai H, Sugita M, Tanji H, Higuchi M, Okamura N et al. Cerebrospinal fluid amyloid β(l–42) levels in the mild cognitive impairment stage of Alzheimer’s disease.Exp Neurol 172: 433–436, 2001.PubMedGoogle Scholar
  69. 69.
    Sjögren M, Davidsson P, Gottfries J, Vanderstichele H, Edman A, Vanmechelen E et al. The cerebrospinal fluid levels of tau, growth-associated protein-43 and soluble amyloid precursor protein correlate in Alzheimer’s disease, reflecting a common patho-physiological process.Dement Geriatr Cogn Disord 12: 257–264, 2001.PubMedGoogle Scholar
  70. 70.
    Sjögren M, Davidsson P, Tullberg M, Minthon L, Wallin A, Wikkelsö C et al. Both total and hyperphosphorylated tau are increased in Alzheimer’s disease.J Neurol Neurosurg Psychiatry 70: 624–630, 2001.PubMedGoogle Scholar
  71. 71.
    Buerger K, Zinkowski R, Teipel SJ, Tapiola T, Arai H, Blennow K et al. Differential diagnosis of Alzheimer’s disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231.Arch Neurol 59: 1267–1272, 2002.PubMedGoogle Scholar
  72. 72.
    Riemenschneider M, Wagenpfeil S, Diehl J, Lautenschlager N, Theml T, Heldmann B et al. Tau and Aβ42 protein in CSF of patients with frontotemporal degeneration.Neurology 58: 1622–1628, 2002.PubMedGoogle Scholar
  73. 73.
    Shoji M, Matsubara E, Murakami T, Manabe Y, Abe K, Kanai M et al. Cerebrospinal fluid tau in dementia disorders: a large scale multicenter study by a Japanese study group.Neurobiol Aging 23: 363–370, 2002.PubMedGoogle Scholar
  74. 74.
    Kapaki E, Paraskevas GP, Zalonis I, Zournas C. CSF tau protein and β-amyloid (1–42) in Alzheimer’s disease diagnosis: discrimination from normal ageing and other dementias in the Greek population.Eur J Neurol 10: 119–128, 2003.PubMedGoogle Scholar
  75. 75.
    Wallin A, Sjögren M, Davidsson P, Blennow K. Decreased cerebrospinal fluid acetylcholinesterase in patients with subcortical ischemic vascular dementia.Dement Geriatr Cogn Disord 16: 200–207, 2003.PubMedGoogle Scholar
  76. 76.
    Kapaki E, Kilidireas K, Paraskevas GP, Michalopoulou M, Patsouris E. Highly increased CSF tau protein and decreased β-amyloid (1–42) in sporadic CJD: a discrimination from Alzheimer’s disease?J Neurol Neurosurg Psychiatry 71: 401–403, 2001.PubMedGoogle Scholar
  77. 77.
    Otto M, Wiltfang J, Cepek L, Neumann M, Mollenhauer B, Steinacker P et al. Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt-Jakob disease.Neurology 58: 192–197, 2002.PubMedGoogle Scholar
  78. 78.
    Van Everbroeck B, Green AJ, Vanmechelen E, Vanderstichele H, Pals P, Sanchez-Valle R et al. Phosphorylated tau in cerebrospinal fluid as a marker for Creutzfeldt-Jakob disease.J Neurol Neurosurg Psychiatry 73: 79–81, 2002.PubMedGoogle Scholar
  79. 79.
    Green AJ. Use of 14-3-3 in the diagnosis of Creutzfeldt-Jakob disease.Biochem Soc Trans 30: 382–386, 2002.PubMedGoogle Scholar
  80. 80.
    Jellinger KA. Diagnostic accuracy of Alzheimer’s disease: a clinicopathological study.Acta Neuropathol 91: 219–220, 1996.PubMedGoogle Scholar
  81. 81.
    Kosunen O, Soininen H, Paljärvi L, Heinonen O, Talasniemi S, Riekkinen PJ Sr. Diagnostic accuracy of Alzheimer’s disease: a neuropathological study.Acta Neuropathol 91: 185–193, 1996.PubMedGoogle Scholar
  82. 82.
    Takeda M, Tanaka T, Arai H, Sasaki H, Shoji M, Okamoto K. Basic and clinical studies on the measurement of β-amyloid(l–42) in cerebrospinal fluid as a diagnostic marker for Alzheimer’s disease and related disorders: multicenter study in Japan.Psychogeriatrics 1: 56–63, 2001.Google Scholar
  83. 83.
    Arai H, Morikawa Y, Higuchi M, Matsui T, Clark CM, Miura M et al. Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology.Biochem Biophys Res Commun 236: 262–264, 1997.PubMedGoogle Scholar
  84. 84.
    Mecocci P, Cherubini A, Bregnocchi M, Chionne F, Cecchetti R, Lowenthal DT et al. Tau protein in cerebrospinal fluid: a new diagnostic and prognostic marker in Alzheimer disease?Alzheimer Dis Assoc Disord 12: 211–214, 1998.PubMedGoogle Scholar
  85. 85.
    Molina L, Touchon J, Herpe M, Lefranc D, Duplan L, Cristol JP et al. Tau and apo E in CSF: potential aid for discriminating Alzheimer’s disease from other dementias.NeuroReport 10: 3491–3495, 1999.PubMedGoogle Scholar
  86. 86.
    Itoh N, Arai H, Urakami K, Ishiguro K, Ohno H, Hampel H et al. Large-scale, multicenter study of cerebrospinal fluid tau protein phosphorylated at serine 199 for the antemortem diagnosis of Alzheimer’s disease.Ann Neurol 50: 150–156, 2001.PubMedGoogle Scholar
  87. 87.
    Gomez-Tortosa E, Gonzalo I, Fanjul S, Sainz MJ, Cantarero S, Cemillan C et al. Cerebrospinal fluid markers in dementia with Lewy bodies compared with Alzheimer disease.Arch Neurol 60: 1218–1222, 2003.PubMedGoogle Scholar
  88. 88.
    Kahle PJ, Jakowec M, Teipel SJ, Hampel H, Petzinger GM, Di Monte DA et al. Combined assessment of tau and neuronal thread protein in Alzheimer’s disease CSF.Neurology 54: 1498–1504, 2000.PubMedGoogle Scholar
  89. 89.
    Kanemaru K, Kameda N, Yamanouchi H. Decreased CSF amyloid β42 and normal tau levels in dementia with Lewy bodies.Neurology 54: 1875–1876, 2000.PubMedGoogle Scholar
  90. 90.
    Sáez-Valero J, Fodero LR, Sjögren M, Andreasen N, Amici S, Gallai V et al. Glycosylation of acetylcholinesterase and butyryl-cholinesterase changes as a function of the duration of Alzheimer’s disease.J Neurosci Res 72: 520–526, 2003.PubMedGoogle Scholar
  91. 91.
    Morikawa Y, Arai H, Matsushita S, Kato M, Higuchi S, Miura M et al. Cerebrospinal fluid tau protein levels in demented and nondemented alcoholics.Alcohol Clin Exp Res 23: 575–577, 1999.PubMedGoogle Scholar
  92. 92.
    Parnetti L, Lanari A, Amici S, Gallai V, Vanmechelen E, Hulstaert F. CSF phosphorylated tau is a possible marker for discriminating Alzheimer’s disease from dementia with Lewy bodies. Phospho-tau International Study Group.Neurol Sci 22: 77–78, 2001.PubMedGoogle Scholar
  93. 93.
    Hampel H, Buerger K, Zinkowski R, Teipel SJ, Andreasen N, Sjögren M et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer’s disease — a comparative study.Arch Gen Psychiatry 61: 95–102, 2004.PubMedGoogle Scholar
  94. 94.
    Maddalena A, Papassotiropoulos A, Muller-Tillmanns B, Jung HH, Hegi T, Nitsch RM et al. Biochemical diagnosis of Alzheimer disease by measuring the cerebrospinal fluid ratio of phosphorylated tau protein to β-amyloid peptide42.Arch Neurol 60: 1202–1206, 2003.PubMedGoogle Scholar
  95. 95.
    Rosso SM, van Herpen E, Pijnenburg YA, Schoonenboom NS, Scheltens P, Heutink P et al. Total tau and phosphorylated tau 181 levels in the cerebrospinal fluid of patients with frontotemporal dementia due to P301L and G272V tau mutations.Arch Neurol 60: 1209–1213, 2003.PubMedGoogle Scholar
  96. 96.
    Buerger K, Zinkowski R, Teipel SJ, Arai H, DeBernardis J, Kerkman D et al. Differentiation of geriatric major depression from Alzheimer’s disease with CSF tau protein phosphorylated at threonine 231.Am J Psychiatry 160: 376–379, 2003.PubMedGoogle Scholar
  97. 97.
    Rosler N, Wichart I, Jellinger KA. Clinical significance of neurobiochemical profiles in the lumbar cerebrospinal fluid of Alzheimer’s disease patients.J Neural Transm 108: 231–246, 2001.PubMedGoogle Scholar
  98. 98.
    Briani C, Ruggero S, Naccarato M, Cagnin A, Ricchieri GL, Pasqui L et al. Combined analysis of CSF βA42 peptide and tau protein and serum antibodies to glycosaminoglycans in Alzheimer’s disease: preliminary data.J Neural Transm 109: 393–398, 2002.PubMedGoogle Scholar
  99. 99.
    Mulder C, Schoonenboom SN, Wahlund LO, Scheltens P, van Kamp GJ, Veerhuis R, Hack CE, Blomberg M, Schutgens RB, Eikelenboom P. CSF markers related to pathogenetic mechanisms in Alzheimer’s disease.J Neural Transm 109: 1491–1498, 2002.PubMedGoogle Scholar
  100. 100.
    Andreasen N, Minthon L, Vanmechelen E, Vanderstichele H, Davidsson P, Winblad B et al. CSF t-tau and CSF-Aβ42 as predictors of development of Alzheimer’s disease in patients with mild cognitive impairment.Neurosci Lett 273: 5–8, 1999.PubMedGoogle Scholar
  101. 101.
    Andreasen N, Minthon L, Davidsson P, Vanmechelen E, Vanderstichele H, Winblad B. Evaluation of CSF-tau and CSF-Aβ42 as diagnostic markers for Alzheimer’s disease in clinical practice.Arch Neurol 58: 373–379, 2001.PubMedGoogle Scholar
  102. 102.
    Andreasen N, Gottfries J, Vanmechelen E, Vanderstichele H, Davidsson P, Winblad B, Rosengren L, Blennow K. Evaluation of CSF biomarkers for axonal and neuronal degeneration, gliosis, and β-amyloid metabolism in Alzheimer’s disease.J Neurol Neurosurg Psychiatry 71: 557–558, 2001.PubMedGoogle Scholar
  103. 103.
    Riemenschneider M, Buch K, Schmolke M, Kurz A, Guder WG. Cerebrospinal protein tau is elevated in early Alzheimer’s disease.Neurosci Lett 212: 209–211, 1996.PubMedGoogle Scholar
  104. 104.
    Galasko D, Clark C, Chang L, Miller B, Green RC, Motter R et al. Assessment of CSF levels of tau protein in mildly demented patients with Alzheimer’s disease.Neurology 48: 632–635, 1997.PubMedGoogle Scholar
  105. 105.
    Galasko D, Chang L, Motter R, Clark CM, Kaye J, Knopman D et al. High cerebrospinal fluid tau and low amyloid β42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype.Arch Neurol 55: 937–945, 1998.PubMedGoogle Scholar
  106. 106.
    Arai H, Ishiguro K, Ohno H, Moriyama M, Itoh N, Okamura N et al. CSF phosphorylated tau protein and mild cognitive impairment: a prospective study.Exp Neurol 166: 201–203, 2000.PubMedGoogle Scholar
  107. 107.
    Gottfries J, Blennow K, Lehmann MW, Regland B, Gottfries CG. One-carbon metabolism and other biochemical correlate of cognitive impairment as visualized by principal component analysis.J Geriatr Psychiatry Neurol 14: 109–114, 2001.PubMedGoogle Scholar
  108. 108.
    Lautenschlager NT, Riemenschneider M, Drzezga A. Primary degenerative mild cognitive impairment: study population, clinical, brain imaging and biochemical findings.Dement Geriatr Cogn Disord 12: 379–386, 2001.PubMedGoogle Scholar
  109. 109.
    Riemenschneider M, Lautenschlager N, Wagenpfeil S, Diehl J, Drzezga A, Kurz A. Cerebrospinal fluid tau and β-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment.Arch Neurol 59: 1729–1734, 2002.PubMedGoogle Scholar
  110. 110.
    Andreasen N, Vanmechelen E, Vanderstichele H, Davidsson P, Blennow K. Cerebrospinal fluid levels of total-tau, phospho-tau and Aβ42 predicts development of Alzheimer’s disease in patients with mild cognitive impairment.Acta Neurol Scand 107(Suppl 179): 47–51, 2003Google Scholar
  111. 111.
    Arai H, Nakagawa T, Kosaka Y, Higuchi M, Matsui T, Okamura N et al. Elevated cerebrospinal fluid tau protein level as a predictor of dementia in memory-impaired patients.Alzheimer’s Res 3: 211–213, 1997.Google Scholar
  112. 112.
    Buerger K, Teipel SJ, Zinkowski R, Blennow K, Arai H, Engel R, Hofmann-Kiefer K et al. CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects.Neurology 59: 627–629, 2002.PubMedGoogle Scholar
  113. 113.
    Skoog I, Davidsson P, Aevarsson O, Vanderstichele H, Vanmechelen E, Blennow K. Cerebrospinal fluid β-amyloid 42 is reduced before the onset of sporadic dementia: a population-based study in 85-year-olds.Dement Geriatr Cogn Disord 15: 169–176, 2003.PubMedGoogle Scholar
  114. 114.
    Finley D, Varshavsky A. The ubiquitin system: functions and mechanisms.Trends Biochem Sci 10: 343–347, 1985.Google Scholar
  115. 115.
    Herschko A, Ciechanover A. The ubiquitin pathway for the degradation of intracellular proteins.Prog Nucleic Acid Res Mol Biol 33: 19–56, 1986.Google Scholar
  116. 116.
    Monia BP, Ecker DJ, Crooke ST. New perspectives on the structure and function of ubiquitin.Biotechnology 8: 209–215, 1990.Google Scholar
  117. 117.
    Perry G, Friedman R, Shaw G, Chau V. Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains.Proc Natl Acad Sci USA 84: 3033–3036, 1987.PubMedGoogle Scholar
  118. 118.
    Mori H, Kondo J, Ihara Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease.Science 235: 1641–1644, 1987.PubMedGoogle Scholar
  119. 119.
    Wang GP, Khatoon S, Iqbal K, Grundke-Iqbal I. Brain ubiquitin is markedly elevated in Alzheimer disease.Brain Res 566: 146–151, 1991.PubMedGoogle Scholar
  120. 120.
    Wang GP, Grundke-Iqbal I, Kascsak RJ, Iqbal K, Wisniewski HM. Alzheimer neurofibrillary tangles: monoclonal antibodies to inherent antigen(s).Acta Neuropathol (Berl) 62: 268–275, 1984.Google Scholar
  121. 121.
    Mehta PD, Thal L, Wisniewski HM, Grundke-Iqbal I, Iqbal K. Paired helical filament antigen in CSF.Lancet 2: 35, 1985.PubMedGoogle Scholar
  122. 122.
    Perry G, Mulvihill P, Fried VA, Smith HT, Grundke-Iqbal I, Iqbal K. Immunochemical properties of ubiquitin conjugates in the paired helical filaments of Alzheimer disease.J Neurochem 52: 1523–1528, 1989.PubMedGoogle Scholar
  123. 123.
    Wang GP, Iqbal K, Bucht G, Winblad B, Wisniewski HM, Grundke-Iqbal I. Alzheimer’s disease: paired helical filament immunoreactivity in cerebrospinal fluid.Acta Neuropathol (Berl) 82: 6–12, 1991.Google Scholar
  124. 124.
    Kudo T, Iqbal K, Ravid R, Swaab DF, Grundke-Iqbal I. Alzheimer disease: correlation of cerebrospinal fluid and brain ubiquitin levels.Brain Res 639: 1–7, 1994.PubMedGoogle Scholar
  125. 125.
    Blennow K, Davidsson P, Wallin A, Gottfries CG, Svennerholm L. Ubiquitin in cerebrospinal fluid in Alzheimer’s disease and vascular dementia.Int Psychogeriatr 6: 13–22, 1994.PubMedGoogle Scholar
  126. 126.
    Friede RL, Samorajski T. Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice.Anat Rec 167: 379–387, 1970.PubMedGoogle Scholar
  127. 127.
    Sjogren M, Blomberg M, Jonsson M, Wahlund LO, Edman A, Lind K, Rosengren L, Blennow K, Wallin A. Neurofilament protein in cerebrospinal fluid: a marker of white matter changes.J Neurosci Res 66: 510–516, 2001.PubMedGoogle Scholar
  128. 128.
    Rosengren LE, Karlsson JE, Sjogren M, Blennow K, Wallin A. Neurofilament protein levels in CSF are increased in dementia.Neurology 52: 1090–1093, 1999.PubMedGoogle Scholar
  129. 129.
    Sjogren M, Rosengren L, Minthon L, Davidsson P, Blennow K, Wallin A. Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD.Neurology 54: 1960–1964, 2000.PubMedGoogle Scholar
  130. 130.
    Hu YY, He SS, Wang XC, Duan QH, Khatoon S, Iqbal K, Grundke-Iqbal I, Wang JZ. Elevated levels of phosphorylated neurofilament proteins in cerebrospinal fluid of Alzheimer disease patients.Neurosci Lett 320: 156–160, 2002.PubMedGoogle Scholar
  131. 131.
    Nixon RA. The regulation of neurofilament protein dynamics by phosphorylation: clues to neurofibrillary pathobiology.Brain Pathol 3: 29–38, 1993.PubMedGoogle Scholar
  132. 132.
    Benowitz LI, Shashoua VE, Yoon M. Specific changes in rapidly transported proteins during regeneration of goldfish optic nerve.J Neurosci 1: 300–307, 1981.PubMedGoogle Scholar
  133. 133.
    Benowitz LI, Perrone-Bizzozero NI, Finklestein SP, Bird ED. Localization of the growth-associated phosphoprotein GAP-43 (B-50, F1) in the human cerebral cortex.J Neurosci 9: 990–995, 1989.PubMedGoogle Scholar
  134. 134.
    Mercken M, Lübke U, Vandermeeren M, Gheuens J, Oestreicher AB. Immunocytochemical detection of the growth-associated protein B-50 by newly characterized monoclonal antibodies in human brain and muscle.J Neurobiol 23: 309–321, 1992.PubMedGoogle Scholar
  135. 135.
    Masliah E, Mallory M, Hansen L, Alford M, Albright T, De-Teresa R, Terry R, Baudier J, Saitoh T. Patterns of aberrant sprouting in Alzheimer’s disease.Neuron 6: 729–739, 1991.PubMedGoogle Scholar
  136. 136.
    Bogdanovic N, Davidsson P, Volkmann I, Winblad B, Blennow K. Growth-associated protein GAP-43 in the frontal cortex and in the hippocampus in Alzheimer’s disease: an immunohistochemical and quantitative study.J Neural Transm 107: 463–478, 2000.PubMedGoogle Scholar
  137. 137.
    Davidsson P, Blennow K. Neurochemical dissection of synaptic pathology in Alzheimer’s disease.Int Psychogeriatr 10: 11–23, 1998.PubMedGoogle Scholar
  138. 138.
    Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease.Neurology 56: 127–129, 2001.PubMedGoogle Scholar
  139. 139.
    Davidsson P, Punchades M, Blennow K. Identification of synaptic vesicle, pre- and postsynaptic proteins in human cerebrospinal fluid using liquid phase isoelectric focusing.Electrophoresis 20: 431–437, 1999.PubMedGoogle Scholar
  140. 140.
    Vanmechelen E, Blennow K, Davidsson P, Cras P, Van de Voorde A. Combination of tau/phospho-tau with other biochemical markers for Alzheimer CSF diagnosis and tau in CSF as marker for neurodegeneration. In: Alzheimer’s disease: biology, diagnosis and therapeutics (Iqbal K, Winblad B, Nishimura T, Takeda M, Wisniewski HM, eds), pp 197–203. Chichester, UK: Wiley Ltd., 1997.Google Scholar
  141. 141.
    Ozturk M, de la Monte S, Gross J, Wands JR. Elevated levels of an exocrine pancreatic secretory protein in Alzheimer disease brain.Proc Natl Acad Sci USA 86: 419–423, 1989.PubMedGoogle Scholar
  142. 142.
    De la Monte SM, Wands JR. Neuronal thread protein overexpression in brains with Alzheimer’s disease lesions.J Neurol Sci 113: 152–164, 1992.PubMedGoogle Scholar
  143. 143.
    De la Monte SM, Ozturk M, Wands JR. Enhanced expression of an exocrine pancreatic protein in Alzheimer’s disease and the developing human brain.J Clin Invest 86: 10004–10013, 1990.Google Scholar
  144. 144.
    De la Monte SM, Volicer L, Hauser SL, Wands JR. Increased levels of neuronal thread protein in cerebrospinal fluid of patients with Alzheimer’s disease.Ann Neurol 32: 733–742, 1992.PubMedGoogle Scholar
  145. 145.
    Gross J, Carlson RI, Brauer AW, Margolies MN, Warshaw AL, Wands JR. Isolation, characterization, and distribution of an unusual pancreatic human secretory protein.J Clin Invest 76: 2115–2126, 1985.PubMedGoogle Scholar
  146. 146.
    Blennow K, Wallin A, Chong JK. Cerebrospinal fluid “neuronal thread protein” comes from serum by passage over the blood-brain barrier.Neurodegeneration 4: 187–193, 1995.PubMedGoogle Scholar
  147. 147.
    Monte SM, Ghanbari K, Frey WH, Beheshti I, Averback P, Hauser SL et al. Characterization of the AD7C-NTP cDNA expression in Alzheimer’s disease and measurement of a 41-kD protein in cerebrospinal fluid.J Clin Invest 100: 3093–3104, 1997.PubMedGoogle Scholar
  148. 148.
    Ghanbari K, Ghanbari H. A sandwich enzyme immunoassay for measuring AD7C-NTP as an Alzheimer’s disease marker: AD7C test.J Clin Lab Anal 12: 223–226, 1998.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2004

Authors and Affiliations

  1. 1.Department of Clinical Neuroscience, Section of Experimental NeuroscienceThe Sahlgrenska Academy at Göteborg University, Sahlgrenska University HospitalMölndalSweden

Personalised recommendations