NeuroRX

, Volume 1, Issue 2, pp 206–212 | Cite as

Molecular neuroimaging in Alzheimer’s disease

Article

Summary

Considerable data exist to support the use of positron emission tomography (PET) and single photon emission computed tomography (SPECT) scanning as biomarkers for Alzheimer’s disease (AD). The techniques are reasonably sensitive and specific in differentiating AD from normal aging, and recent studies with pathological confirmation show good sensitivity and specificity in differentiating AD from other dementias. These techniques also can detect abnormalities in groups of asymptomatic and presymptomatic individuals and may be able to predict decline to dementia. However, there are a number of existing questions related to the use of these techniques in samples that are fully representative of the spectrum of patients with dementia. For example, it is unclear how well PET and SPECT perform in comparison to a clinical diagnosis obtained in the same patient group, when autopsy is used as a gold standard. It will also be important to know what PET and SPECT add to the certainty of diagnosis in addition to the standard clinical diagnosis. Despite these unanswered questions, PET and SPECT may have application as biomarkers for AD in a number of clinical and research settings, especially in academic centers, where most of the existing studies have been done.

Key Words

PET SPECT functional imaging molecular imaging Alzheimer’s glucose metabolism blood flow 

References

  1. 1.
    Kety SS. Human cerebral blood flow and oxygen consumption as related to aging.Res Publ Assoc Res Nerv Ment Dis 35: 31–45, 1956.PubMedGoogle Scholar
  2. 2.
    Frackowiak RSJ, Pozzili C, Legg NJ, Du Boulay GH, Marshall J, Lenzi L et al. Regional cerebral oxygen supply and utilization in dementia: a clinical and physiological study with oxygen-15 and positron tomography.Brain 104: 753–778, 1981.PubMedCrossRefGoogle Scholar
  3. 3.
    Friedland RP, Budinger TF, Ganz E, Yano Y, Mathis CA, Koss B et al. Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with [18F]Fluorodeoxyglucose.J Comput Assist Tomogr 7: 590–598, 1983.PubMedCrossRefGoogle Scholar
  4. 4.
    Benson DF, Kuhl DE, Hawkins RA, Phelps ME, Cummings JL, Tsai SY. The fluorodeoxyglucose 18F scan in Alzheimer’s disease and multi-infarct dementia.Arch Neurol 40: 711–714, 1983.PubMedGoogle Scholar
  5. 5.
    Johnson KA, Mueller ST, Walshe TM, English RJ, Holman BL. Cerebral perfusion imaging in Alzheimer’s disease: use of single photon emission computed tomography and iofetamine hydrochloride I 123.Arch Neurol 44: 165–168, 1987.PubMedGoogle Scholar
  6. 6.
    Jagust WJ, Budinger TF, Reed BR. The diagnosis of dementia with single photon emission computed tomography.Arch Neurol 44: 258–262, 1987.PubMedGoogle Scholar
  7. 7.
    Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease.Ann Neurol 42: 85–94, 1997.PubMedCrossRefGoogle Scholar
  8. 8.
    Johnson KA, Holman BL, Rosen TJ, Nagel JS, English RJ, Growdon JH. Iofetamine I 123 single photon emission computed tomography is accurate in the diagnosis of Alzheimer’s disease.Arch Intern Med 150: 752–756, 1990.PubMedCrossRefGoogle Scholar
  9. 9.
    Eberling JL, Jagust WJ, Reed BR, Baker MG. Reduced temporal lobe blood flow in Alzheimer’s disease.Neurobiol Aging 13: 483–491, 1992.PubMedCrossRefGoogle Scholar
  10. 10.
    Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET.J Nucl Med 36: 1238–1248, 1995.PubMedGoogle Scholar
  11. 11.
    Johnson KA, Jones K, Holman BL, Becker JA, Spiers PA, Satlin A et al. Preclinical prediction of Alzheimer’s disease using SPECT.Neurology 50: 1563–1571, 1998.PubMedGoogle Scholar
  12. 12.
    Herholz K. PET studies in dementia.Ann Nucl Med 17: 79–89, 2003.PubMedCrossRefGoogle Scholar
  13. 13.
    Miller BL, Cummings JL, Villaneuva-Meyer J, Boone K, Mehringer CM, Lesser IM et al. Frontal lobe degeneration: clinical, neuropsychological, and SPECT characteristics.Neurology 41: 1374–1382, 1991.PubMedGoogle Scholar
  14. 14.
    Ishii K, Sakamoto S, Sasaki M, Kitagaki H, Yamaji S, Hashimoto M et al. Cerebral glucose metabolism in patients with frontotemporal dementia.J Nucl Med 39: 1875–1878, 1998.PubMedGoogle Scholar
  15. 15.
    Santens P, De Bleecker J, Goethals P, Strijckmans K, Lemahieu I, Slegers G et al. Differential regional cerebral uptake of (18)F-fluoro-2-deoxy-D-glucose in Alzheimer’s disease and frontotemporal dementia at initial diagnosis.Eur Neurol 45: 19–27, 2001.PubMedCrossRefGoogle Scholar
  16. 16.
    Albin RL, Minoshima S, D’Amato CJ, Frey KA, Kuhl DA, Sima AAF. Fluorodeoxyglucose positron emission tomography in diffuse Lewy body disease.Neurology 47: 462–466, 1996.PubMedGoogle Scholar
  17. 17.
    Imamura T, Ishii K, Sasaki M, Kitagaki H, Yamaji S, Hirono N et al. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease: a comparative study using positron emission tomography.Neurosci Lett 235: 49–52, 1997.PubMedCrossRefGoogle Scholar
  18. 18.
    Lobotesis K, Fenwick JD, Phipps A, Ryman A, Swann A, Ballard C et al. Occipital hypoperfusion on SPECT in dementia with Lewy bodies but not AD.Neurology 56: 643–649, 2001.PubMedGoogle Scholar
  19. 19.
    Duara R, Barker W, Loewenstein D, Pascal S, Bowen B. Sensitivity and specificity of positron emission tomography and magnetic resonance imaging studies in Alzheimer’s disease and multi-infarct dementia.Eur Neurol 29(Suppl 3): 9–15, 1989.PubMedCrossRefGoogle Scholar
  20. 20.
    Kwan LT, Reed BR, Eberling JL, Schuff N, Tanabe J, Norman D et al. Effects of subcortical cerebral infarction on cortical glucose metabolism and cognitive function.Arch Neurol 56: 809–814, 1999.PubMedCrossRefGoogle Scholar
  21. 21.
    Sultzer DL, Mahler ME, Cummings JL, Van Gorp WG, Hinkin CH, Brown C. Cortical abnormalities associated with subcortical lesions in vascular dementia.Arch Neurol 52: 773–780, 1995.PubMedGoogle Scholar
  22. 22.
    Foster NL, Chase TN, Mansi L, Brooks R, Fedio P, Patronas NJ et al. Cortical abnormalities in Alzheimer’s disease.Ann Neurol 16: 649–654, 1984.PubMedCrossRefGoogle Scholar
  23. 23.
    Waldemar G, Walovitch RC, Andersen AR, Hasselbalch SG, Bigelow R, Joseph JL et al. 99mTc-bicisate (neurolite) SPECT brain imaging and cognitive impairment in dementia of the Alzheimer type: a blinded read of image sets from a multicenter SPECT trial.J Cereb Blood Flow Metab 14(Suppl 1): S99-S105, 1994.PubMedGoogle Scholar
  24. 24.
    Kawano M, Ichimiya A, Ogomori K, Kuwabara Y, Sasaki M, Yoshida T et al. Relationship between both IQ and Mini-Mental State Examination and the regional cerebral glucose metabolism in clinically diagnosed Alzheimer’s disease: a PET study.Dement Geriatr Cogn Disord 12: 171–176, 2001.PubMedCrossRefGoogle Scholar
  25. 25.
    Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies.Am J Psychiatry 159: 738–745, 2002.PubMedCrossRefGoogle Scholar
  26. 26.
    Jobst KA, Barnetson LPD, Shepstone BJ. Accurate prediction of histologically confirmed Alzheimer’s disease and the differential diagnosis of dementia: the use of NINCDS-ADRDA and DSM-III-R criteria, SPECT, X-ray CT, and ApoE4 in medial temporal lobe dementias.Int Psychogeriatr 10: 271–302, 1998.PubMedCrossRefGoogle Scholar
  27. 27.
    Bonte FJ, Weiner MF, Bigio EH, White CL. Brian blood flow in the dementias: SPECT with histopathologic correlation in 54 patients.Radiology 202: 793–797, 1997.PubMedGoogle Scholar
  28. 28.
    Read SL, Miller BL, Mena I, Kim R, Itabashi H, Darby A. SPECT in dementia: clinical and pathological correlation.J Am Geriatr Soc 43: 1243–1247, 1995.PubMedGoogle Scholar
  29. 29.
    Hoffman JM, Welsh-Bohmer KA, Hanson M, Crain B, Hulette C, Earl N et al. FDG PET imaging in patients with pathologically verified dementia.J Nucl Med 41: 1920–1928, 2000.PubMedGoogle Scholar
  30. 30.
    Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome.JAMA 286: 2120–2127, 2001.PubMedCrossRefGoogle Scholar
  31. 31.
    Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology.Neurology 56: 1143–1153, 2001.PubMedGoogle Scholar
  32. 32.
    Jagust W, Thisted R, Devous MD Sr, Van Heertum R, Mayberg H, Jobst K et al. SPECT perfusion imaging in the diagnosis of Alzheimer’s disease: a clinical-pathologic study.Neurology 56: 950–956, 2001.PubMedGoogle Scholar
  33. 33.
    Consensus report of the Working Group on: Molecular and biochemical markers of Alzheimer’s disease. Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group.Neurobiol Aging 19: 109–116, 1998.CrossRefGoogle Scholar
  34. 34.
    Haan MN, Mungas DM, Gonzalez HM, Ortiz TA, Acharya A, Jagust WJ. Prevalence of dementia in older latinos: the influence of type 2 diabetes mellitus, stroke and genetic factors.J Am Geriatr Soc 51: 169–177, 2003.PubMedCrossRefGoogle Scholar
  35. 35.
    Helmer C, Joly P, Letenneur L, Commenges D, Dartigues JF. Mortal with dementia: results from a French prospective community-based cohort.Am J Epidemiol 154: 642–648, 2001.PubMedCrossRefGoogle Scholar
  36. 36.
    Mielke R, Herholz K, Grond M, Kessler J, Heiss W-D. Differences of regional cerebral glucose metabolism between presenile and senile dementia of Alzheimer type.Neurobiol Aging 1991; 13: 93–98CrossRefGoogle Scholar
  37. 37.
    Grady CL, Haxby JV, Horwitz B, Berg G, Rapoport SI. Neuropsychological and cerebral metabolic function in early vs late onset dementia of the Alzheimer type.Neuropsychologia 25: 807–816, 1987.PubMedCrossRefGoogle Scholar
  38. 38.
    Small GW, Kuhl DE, Riege WH, Fujikawa DG, Ashford JW, Metter J et al. Cerebral glucose metabolic patterns in Alzheimer’s disease: effect of gender and age at dementia onset.Arch Gen Psychiatry 46: 527–532, 1989.PubMedGoogle Scholar
  39. 39.
    Kemp PM, Holmes C, Hoffmann SM, Bolt L, Holmes R, Rowden J, et al. Alzheimer’s disease: differences in technetium-99m HM-PAO SPECT scan findings between early onset and late onset dementia.J Neurol Neurosurg Psychiatry 74: 715–719, 2003.PubMedCrossRefGoogle Scholar
  40. 40.
    DeCarli C, Grady CL, Clark CM, Katz DA, Brady DR, Murphy DGM et al. Comparison of positron emission tomography, cognition and brain volume in Alzheimer’s disease with and without severe abnormalities of white matter.J Neurol Neurosurg Psychiatry 60: 158–167, 1996.PubMedCrossRefGoogle Scholar
  41. 41.
    Stern Y, Alexander GE, Prohovnik I, Mayeux R. Inverse relationship between education and parietotemporal perfusion deficit in Alzheimer’s disease.Ann Neurol 32: 371–375, 1992.PubMedCrossRefGoogle Scholar
  42. 42.
    Jagust WJ, Eberling JL, Wu CC, Finkbeiner A, Mungas D, Valk PE et al. Brain function and cognition in a community sample of elderly Latinos.Neurology 59: 378–383, 2002.PubMedGoogle Scholar
  43. 43.
    Scheltens P, Launer LJ, Barkhof F, Weinstein HC, Jonker C. The diagnostic value of magnetic resonance imaging and technetium 99m-HMPAO single photon emission computed tomography for the diagnosis of Alzheimer’s disease in a community dwelling elderly population.Alzheimer Dis Assoc Disord 11: 63–70, 1997.PubMedCrossRefGoogle Scholar
  44. 44.
    Wolfe N, Reed BR, Eberling JL, Jagust WJ. Temporal lobe perfusion on single photon emission computed tomography predicts the rate of cognitive decline in Alzheimer’s disease.Arch Neurol 52: 257–262, 1995.PubMedGoogle Scholar
  45. 45.
    Jagust WJ, Haan MN, Eberling JL, Wolfe N, Reed BR. Functional imaging predicts cognitive decline in Alzheimer’s disease.J Neuroimaging 6: 156–160, 1996.PubMedGoogle Scholar
  46. 46.
    Jagust WJ, Haan MN, Reed BR, Eberling JL. Brain perfusion imaging predicts survival in Alzheimer’s disease.Neurology 51: 1009–1013, 1998.PubMedGoogle Scholar
  47. 47.
    Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the s4 allele for apolipoprotein E.N Engl J Med 334: 752–758, 1996.PubMedCrossRefGoogle Scholar
  48. 48.
    Kennedy AM, Frackowiak RSJ, Newman SK, Bloomfield PM, Seaward J, Roques P et al. Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease.Neurosci Lett 186: 17–20, 1995.PubMedCrossRefGoogle Scholar
  49. 49.
    Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome.Arch Neurol 56: 303–308, 1999.PubMedCrossRefGoogle Scholar
  50. 50.
    De Santi S, deLeon MJ, Rusinek H, Convit A, Tarshish C, Roche A et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD.Neurobiol Aging 22: 529–539, 2001.PubMedCrossRefGoogle Scholar
  51. 51.
    de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H et al. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET).Proc Natl Acad Sci USA 98: 10966–10971, 2001.PubMedCrossRefGoogle Scholar
  52. 52.
    Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease.Proc Natl Acad Sci USA 97: 6037–6042, 2000.PubMedCrossRefGoogle Scholar
  53. 53.
    Arnaiz E, Jelic V, Almkvist O, Wahlund LO, Winblad B, Valind S et al. Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment.Neuro-Report 12: 851–855, 2001.Google Scholar
  54. 54.
    Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease?Neurology 60: 1374–1377, 2003.PubMedGoogle Scholar
  55. 55.
    Tune L, Tiseo PJ, Ieni J, Perdomo C, Pratt RD, Votaw JR et al. Donepezil HCl (E2020) maintains functional brain activity in patients with Alzheimer disease: results of a 24-week, double-blind, placebo-controlled study.Am J Geriatr Psychiatry 11: 169–177, 2003.PubMedGoogle Scholar
  56. 56.
    Mega MS, Cummings JL, O’Connor SM, Dinov ID, Reback E, Felix J et al. Cognitive and metabolic responses to metrifonate therapy in Alzheimer disease.Neuropsychiatry Neuropsychol Behav Neurol 14: 63–68, 2001.PubMedGoogle Scholar
  57. 57.
    Nobili F, Koulibaly M, Vitali P, Migneco O, Mariani G, Ebmeier K et al. Brain perfusion follow-up in Alzheimer’s patients during treatment with acetylcholinesterase inhibitors.J Nucl Med 43: 983–990, 2002.PubMedGoogle Scholar
  58. 58.
    Nakano S, Asada T, Matsuda H, Uno M, Takasaki M. Donepezil hydrochloride preserves regional cerebral blood flow in patients with Alzheimer’s disease.J Nucl Med 42: 1441–1445, 2001.PubMedGoogle Scholar
  59. 59.
    Reiman EM, Caselli RJ, Chen K, Alexander GE, Bandy D, Frost J. Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease.Proc Natl Acad Sci USA 98: 3334–3339, 2001.PubMedCrossRefGoogle Scholar
  60. 60.
    Schneider LS, Olin JT, Lyness SA, Chui HC. Eligibility of Alzheimer’s disease clinic patients for clinical trials.J Am Geriatr Soc 45: 923–928, 1997.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2004

Authors and Affiliations

  1. 1.School of Public Health and Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeley

Personalised recommendations