NeuroRX

, Volume 1, Issue 1, pp 46–70 | Cite as

Clinical trials for cytoprotection in stroke

Summary

To date, many cytoprotective drugs have reached the stage of pivotal phase 3 efficacy trials in acute stroke patients. (Table 1) Unfortunately, throughout the neuroprotective literature, the phrase “failure to demonstrate efficacy” prevails as a common thread among the many neutral or negative trials, despite the largely encouraging results encountered in preclinical studies. The reasons for this discrepancy are multiple, and have been discussed by Dr. Zivin in his review. Many of the recent trials have addressed deficiencies of the previous ones with more rigorous trial design, including more specific patient selection criteria (ensure homogeneity of stroke location and severity), stratified randomization algorithms (time-to-treat), narrowed therapeutic time-window and pharmacokinetic monitoring. Current trials have also incorporated biologic surrogate markers of toxicity and outcome such as drug levels and neuroimaging. Lastly, multi-modal therapies and coupled cytoprotection/reperfusion strategies are being investigated to optimize tissue salvage. This review will focus on individual therapeutic strategies and we will emphasize what we have learned from these trials both in terms of trial design and the biologic effect (or lack thereof) of these agents.

Key Words

Stroke neuroprotection ischemia treatment clinical trials 

References

  1. 1.
    Bean BP. Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state.Proc Natl Acad Sci USA 81: 6388–6392, 1984.PubMedGoogle Scholar
  2. 2.
    Grotta JC. Clinical aspects of the use of calcium antagonists in cerebrovascular disease.Clin Neuropharmacol 14: 373–390, 1991.PubMedGoogle Scholar
  3. 3.
    Petruk KC, West M, Mohr G, Weir BK, Benoit BG, Gentili F et al. Nimodipine treatment in poor-grade aneurysm patients: results of a multicenter double-blind placebo-controlled trial.J Neurosurg 68: 505–517, 1988.PubMedGoogle Scholar
  4. 4.
    Pickard JD, Murray GD, Illingworth R, Shaw MD, Teasdale GM, Foy PM et al. Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial.BMJ 298: 636–642, 1989.PubMedGoogle Scholar
  5. 5.
    Ohman J, Servo A, Heiskanen O. Long-term effects of nimodipine on cerebral infarcts and outcome after aneurysmal subarachnoid hemorrhage and surgery.J Neurosurg 74: 8–13, 1991PubMedGoogle Scholar
  6. 6.
    Barker FG, Ogilvy CS. Efficacy of prophylactic nimodipine for delayed ischemic deficit after subarachnoid hemorrhage: a meta-analysis.J Neurosurg 84: 405–414, 1996.PubMedGoogle Scholar
  7. 7.
    Feigin VL, Rinkel GJ, Algra A, Vermeulen M, van Gijn J. Calcium antagonists for aneurismal subarachnoid haemorrhage.Cochrane Database Syst Rev CD000277, 2000.Google Scholar
  8. 8.
    Gelmers HJ. The effects of nimodipine on the clinical course of patients with acute ischemic stroke.Acta Neurol Scand 69: 232–239, 1984.PubMedGoogle Scholar
  9. 9.
    Paci A, Ottaviano P, Trenta A, Iannone G, DeSantis L, Lancia G et al. Nimodipine in acute ischemic stroke: a double-blind controlled study.Acta Neurol Scand 80: 282–286, 1989.PubMedGoogle Scholar
  10. 10.
    Gelmers HJ, Hennerici M. Effect of nimodipine on acute ischemic stroke: Pooled results from 5 randomized trials.Stroke 21[Suppl 12]: IV81-IV84, 1990.PubMedGoogle Scholar
  11. 11.
    Nag D, Garg RK, Varma M. A randomized double-blind controlled study of nimodipine in acute cerebral ischemic stroke.Indian J Physiol (Lond) Pharmacol 42: 555–558, 1998.Google Scholar
  12. 12.
    The American Nimodipine Study Group. Clinical trial of nimodipine in acute ischemic stroke.Stroke 23: 3–8, 1992.Google Scholar
  13. 13.
    Wahlgren NG, MacMahon DG, De Keyser J, Ryman T, INWEST Study Group: Intravenous Nimodipine West European Stroke Trial (INWEST) of nimodipine in the treatment of acute ischemic stroke.Cerebrovasc Dis 4: 204–210, 1994.Google Scholar
  14. 14.
    Kaste M, Fogelholm R, Erila T et al. A randomized, double-blind, placebo-controlled trial of nimodipine in acute ischemic hemispheric stroke.Stroke 25: 1348–1353, 1994.PubMedGoogle Scholar
  15. 15.
    Ahmed N, Nasman P, Wahlgren NG. Effect of intravenous nimodipine on blood pressure and outcome after acute stroke.Stroke 31: 1250–1255, 2000.PubMedGoogle Scholar
  16. 16.
    Mohr JP, Orgogozo JM, Harrison M, Hennerici M, Wahlgren NG, Gelmers JH et al. Meta-analysis of oral nimodipine trials in acute ischemic stroke.Cerebrovasc Dis 4: 197–203, 1994.Google Scholar
  17. 17.
    Horn J, de Haan RJ, Verneulen M, Limburg M. Very Early Nimodipine Use in Stroke (VENUS): a randomized, double-blind, placebo-controlled trial.Stroke 32: 461–465, 2001.PubMedGoogle Scholar
  18. 18.
    Rosenbaum D, Zabramski J, Frey J, Yatsu F, Marler J, Spetzler R et al. Early treatment of ischemic stroke with a calcium antagonist.Stroke 22: 437–441, 1991.PubMedGoogle Scholar
  19. 19.
    Koh JY, Cotman CW. Programmed cell death: its possible contribution to neurotoxicity mediated by calcium channel antagonists.Brain Res 587: 233–240, 1992.PubMedGoogle Scholar
  20. 20.
    Grotta JC, Picone CM, Ostrow PT, Strong RA, Earls RM, Yao LP et al. CGS-19755, a competitive NMDA receptor antagonist, reduces calcium-calmodulin binding and improves outcome after global cerebral ischemia.Ann Neurol 27: 612–619, 1990.PubMedGoogle Scholar
  21. 21.
    Simon R, Shiraishi K. N-methyl-d-aspartate antagonist reduces stroke size and regional glucose metabolism.Ann Neurol 27: 606–611, 1990.PubMedGoogle Scholar
  22. 22.
    Simmonds J, Sailer T, Moyer J. The effects of CGS-19755 in rat focal cerebral ischemia produced by tandem ipsilateral common carotid artery and middle cerebral artery occlusion [abstract].Soc Neurosci Abstr 19: 1647, 1993.Google Scholar
  23. 23.
    Grotta J, Clark W, Coull B, Pettigrew LC, Mackay B, Goldstein KB et al. Safety and tolerability of the glutamate antagonist CGS 1975 (selfotel) in patients with acute ischemic stroke: results of a phase IIa randomized trial.Stroke 26: 602–605, 1995.PubMedGoogle Scholar
  24. 24.
    Davis SM, Lees KR, Albers GW, Diener HC, Markabi S, Karlsson G, Norris J. Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist.Stroke 31: 347–354, 2000.PubMedGoogle Scholar
  25. 25.
    Steinberg GK, Perez-Pinzon MA, Maier CM et al. CGS-19755: correlation of in vitro neuroprotection, protection against experimental ischemia and CSF levels in cerebrovascular surgery patients. Abstract presented at Proceedings of the 5th International Symposium on Pharmacology of Cerebral Ischemia, Marburg, Germany, July 20–22, 1994.Google Scholar
  26. 26.
    Albers GW, Atkinson RP, Kelley RE, Rosenbaum DM. Safety, tolerability, and pharmacokinetics of the N-methyl-B-aspartate antagonist dextrorphan in patients with acute stroke.Stroke 26: 254–258, 1995.PubMedGoogle Scholar
  27. 27.
    Minematsu K, Fisher M, Li L, Davis MA, Knapp AG, Cotter RE et al. Effects of a novel MNDA antagonist on experimental stroke rapidly and quantitatively assessed by diffusion-weighted MRI.Neurology 43: 397–403, 1993.PubMedGoogle Scholar
  28. 28.
    Dyker AG, Edwards KR, Fayad PB, Hormes JT, Lees KR. Safety and tolerability study of aptiganel hydrochloride in patients with an acute ischemic stroke.Stroke 30: 2038–2042, 1999.PubMedGoogle Scholar
  29. 29.
    Albers GW, Goldstein LB, Hall D, for the Aptiganel Acute Stroke Investigators. Aptiganel hydrochloride in acute ischemic stroke: a randomized controlled trial.JAMA 21: 2673–2682, 2001Google Scholar
  30. 30.
    Muir KW. Magnesium in stroke treatment.Postgrad Med J 78: 641–645, 2002.PubMedGoogle Scholar
  31. 31.
    Weglicki WB, Phillips TM. Pathobiology of magnesium deficiency: a cytokine/neurogenic inflammation hypothesis.Am J Physiol (Lond) 263: R734-R737, 1992.Google Scholar
  32. 32.
    Yang Y, Li Q, Ahmad F, Shuaib A. Survival and histological evaluation of therapeutic window of post-ischemia treatment with magnesium sulfate in embolic stroke model of rat.Neurosci Lett 285: 119–122, 2000.PubMedGoogle Scholar
  33. 33.
    Muir KW, Lees DR. A randomized, double-blind, placebo-controlled pilot trial of intravenous magnesium sulfate in acute stroke.Stroke 126: 1183–1188, 1995.Google Scholar
  34. 34.
    Muir KW, Lees KR. Dose optimization of intravenous magnesium sulfate after acute stroke.Stroke 29: 918–923, 1998.PubMedGoogle Scholar
  35. 35.
    Izumi Y, Roussl S, Pinard E, Seylaz J. Reduction of infarct volume by magnesium after middle cerebral artery occlusion in rates.J Cereb Blood Flow Metab 11: 1025–1030, 1991.PubMedGoogle Scholar
  36. 36.
    Saver JL, Kidwell CS, Leary M et al. The field administration of stroke therapy-magnesium (FAST-MAG) pilot trial. Abstract presented at the ongoing clinical trials session, 26th International Stroke Conference, Fort Lauderdale, FL, Feb 2001.Google Scholar
  37. 37.
    Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs.Science 244: 1360–1362, 1989.PubMedGoogle Scholar
  38. 38.
    Olney JW, Wozniak DF, Jevtovic-Todorovic V, Farber NB, Bittigau P, Ikonomidou C. Drug-induced apoptotic neurodegeneration in the developing brain.Brain Pathol 12: 488–498, 2002PubMedGoogle Scholar
  39. 39.
    Lees KR. Cerestat and other NMDA antagonists in ischemic stroke.Neurology 49[Suppl 4]: S66-S69, 1997.PubMedGoogle Scholar
  40. 40.
    Bordi F, Pietra C, Ziviani L, Reggiani A. The glycine antagonist GV150526 protects somatosensory evoked potentials and reduces the infarct area in the MCAO model of focal ischemia in the rat.Exp Neurol 145: 425–433, 1997.PubMedGoogle Scholar
  41. 41.
    Dyker AG. Lees KR. Safety and tolerability of GV150526 (a glycine site antagonist at the N-methyl-d-aspartate receptor) in patients with acute stroke.Stroke 30: 986–992, 1999.PubMedGoogle Scholar
  42. 42.
    Sacco RL, DeRosa JT, Haley EC, Levin B, Ordronneau P, Phillips SJ et al., for the GAIN Americas Investigators. Glycine antagonist in neuroprotection for patients with acute stroke: GAIN Americas: a randomized controlled trial.JAMA 285: 1719–1728, 2001.PubMedGoogle Scholar
  43. 43.
    Lees KR, Asplund K, Carolei A, Davis SM, Diener HC, Kaste HM et al, for the GAIN International Investigators. Glycine antagonist (gavestinel) in neuroprotection (GAIN International) in patients with acute stroke: A randomized controlled trial.Lancet 355: 1949–1954, 2000.PubMedGoogle Scholar
  44. 44.
    Kawasaki-Yatsugi S, Ichiki C, Yatsugi S, Takahashi M, Shimizu-Sasamata M, Yamaguchi T et al: Neuroprotective effects of an AMPA receptor antagonist YM872 in a rat transient middle cerebral artery occlusion model.Neuropharmacology 39: 211–217, 2000.PubMedGoogle Scholar
  45. 45.
    Suzuki M, Sasamata M, Miyata K. Neuroprotective effects of YM872 coadministered with t-PA in a rat embolic stroke model.Brain Res 959: 169–172, 2003.PubMedGoogle Scholar
  46. 46.
    Smith SE, Meldrum BS. Cerebroprotective effect of lamotrigine after focal ischemia in rats.Stroke 26: 117–121, 1995.PubMedGoogle Scholar
  47. 47.
    Traystman RJ, Klaus JA, DeVries AC, Shaivitz AB, Hurn PD. Anticonvulsant lamotrigine administered on reperfusion fails to improve experimental stroke outcomes.Stroke 32: 783–787, 2001.PubMedGoogle Scholar
  48. 48.
    Leach MJ, Swan JH, Eisenthal D, Dopson M, Nobbs M. BW619C89, a glutamate release inhibitor, protects against focal cerebral ischemic damage.Stroke 24: 1063–1067, 1993PubMedGoogle Scholar
  49. 49.
    Kawaguchi K, Graham SH. Neuroprotective effects of the glutamate release inhibitor 619C89 in temporary middle cerebral artery occlusion.Brain Res 749: 131–134, 1991.Google Scholar
  50. 50.
    Muir KW, Holzapfel L, Lees KR. Phase II clinical trial of sipatrigine (619C89) by continuous infusion in acute stroke.Cerebrovasc Dis 10: 431–436, 2000.PubMedGoogle Scholar
  51. 51.
    Sipatrigine in Stroke (SIS). Stroke Center Clinical Trials Directory. http://www.strokecenter.org/trials/TrialDetail.asp?ref=276&browse=acute [updated 7/3/2002].Google Scholar
  52. 52.
    Fosphenytoin Phase 3. Stroke Center Clinical Trials Directory. http:// www.strokecenter.org/trials/TrialDetail.asp?ref=218&browse=acute [updated 8/3/2000].Google Scholar
  53. 53.
    Gribkoff VK, Starrett JE, Dworetzky SI. The pharmacology and molecular biology of large-conductance calcium-activated (BK) potassium channels.Adv Pharmacol 37: 319–348, 1997.PubMedGoogle Scholar
  54. 54.
    Bozik M, Hommel M, Grotta J et al. Efficacy and safety of MaxiPost in patients with acute stroke [abstract].JNS 187: S252, 2001.Google Scholar
  55. 55.
    DeRyck M, Keersmaekers R, Clincke G, Janssen M, VanReet S. Lubeluzole, a novel benzothiazole, protects neurologic function after cerebral thrombotic stroke in rats: an apparent stereospecific effect [abstract].Soc Neurosci Abstr 20: 185, 1994.Google Scholar
  56. 56.
    Aronowski J, Strong R, Grotta JC. Treatment of experimental focal ischemia in rats with lubeluzole.Neuropharmacology 35: 689–693, 1996.PubMedGoogle Scholar
  57. 57.
    DeRyck M, Verhoye M, Van der Linden AM. Diffusion-weighted MRI of infarct growth in a rat photochemical stroke model: effect of lubeluzole.Neuropharmacology 39: 691–702, 2000.Google Scholar
  58. 58.
    Scheller DKA, De Ryck M, Kolb J, Szathmary S, van Reempts J, Clincke G et al. Lubeluzole blocks increases in extracellular glutamate and taurine in the peri-infarct zone in rats.Eur J Pharmacol 338: 243–251, 1997.PubMedGoogle Scholar
  59. 59.
    Lesage AS, Peeters L, Leysen JE. Lubeluzole, a novel long-term neuroprotectant, inhibits the glutamate-activated nitric oxide synthase pathway.J Pharmacol Exp Ther 279: 759–766, 1996.PubMedGoogle Scholar
  60. 60.
    Diener H, Hacke W, Hennerici M, Radberg J, Hautson L, De Keyser J, for the Lubeluzole International Study Group. Lubeluzole in acute ischemic stroke: a double-blind placebo controlled phase II trial.Stroke 27: 76–81, 1996.PubMedGoogle Scholar
  61. 61.
    DeRyck M, Keersmackers R, Duytschaever H, Claes C, Clicke G, Janssen M. Lubeluzole protects sensorimotorfunction and reduces infarct size in a photochemical stroke model.J Pharmacol Exp Ther 35: 748–758, 1996.Google Scholar
  62. 62.
    Diener HC. Multinational randomized controlled trial of lubeluzole in acute ischaemic stroke: European and Australian Lubeluzole Ischaemic Stroke Study Group.Cerebrovasc Dis 8: 172–181, 1998.PubMedGoogle Scholar
  63. 63.
    Grotta J, for the US and Canadian Lubeluzole Ischemic Stroke Study Group. Lubeluzole treatment of acute ischemic stroke.Stroke 28: 2338–2346, 1997.PubMedGoogle Scholar
  64. 64.
    Grotta J. Combination Therapy Stroke Trial: Recombinant tissue-type plasminogen activator with/without lubeluzole.Cerebrovasc Dis 12: 258–263, 2001.PubMedGoogle Scholar
  65. 65.
    Gandolfo C, Sandercock P, Conti M. Lubeluzole for acute ischaemic stroke.Cochrane Database Syst Rev CD001924, 2002.Google Scholar
  66. 66.
    Davies MF, Deisz RA, Prince DA, Peroutka SJ. Two distinct effects of 5-hydroxytryptamine on single cortical neurons.Brain Res 423: 347–352, 1987.PubMedGoogle Scholar
  67. 67.
    Schaper C, Zhu Y, Kouklei M, Culmsee C, Krieglstein J. Stimulation of 5-HT1A receptors reduces apoptosis after transient forebrain ischemia in the rat.Brain Res 883: 41–50, 2000.PubMedGoogle Scholar
  68. 68.
    Ramirez-Lessepas M, Patrick BK, Snyder BD, Lakatua DJ. Failure of central nervous system serotonin blockage to influence outcome in acute cerebral infarction: a double-blind randomized trial.Stroke 17: 953–956, 1986.PubMedGoogle Scholar
  69. 69.
    Semkova I, Wolz P, Krieglstein J. Neuroprotective effect of 5-HT1A receptor agonist, BAY × 3702, demonstrated in vitro and in vivo.Eur J Pharmacol 359: 251, 1998.PubMedGoogle Scholar
  70. 70.
    Bayer Randomized Acute Ischemia Neuroprotectant Study (BRAINS). Abstracts from the 4th World Stroke Congress.Stroke 31: 2768, 2000.Google Scholar
  71. 71.
    Teal P, Rombout F, Weber H et al. Repinotan (BAY × 3702) in acute ischemic stroke: a randomized exposure controlled trial. Abstract presented in the Ongoing Clinical Trials Session, 26th International Stroke Conference, Fort Lauderdale, FL, February, 2001.Google Scholar
  72. 72.
    ONO-2506 in Acute Ischemic Stroke. Stroke Center Clinical Trials Directory. http://www.strokecenter.org/trials/TrialDetail. asp?ref=469&browse=acute [updated 11/14/2002].Google Scholar
  73. 73.
    Harini RJ, Supra EL, Roberts JP, Lavyne MH. Effect of naloxone on cerebral perfusion and cardiac performance during experimental cerebral ischemia.J Neurosurg 64: 780–786, 1986.Google Scholar
  74. 74.
    Namba S, Nishigaki S, Fujiwara N, Wani T, Namba Y, Masaoka T. Opiate-antagonist reversal of neurological deficits: experimental and clinical studies.Jpn J Psychiatry Neurol 40: 61–79, 1986.PubMedGoogle Scholar
  75. 75.
    Baskin DS, Juroda H, Hosobuchi Y, Lee NM. Treatment of Stroke with optiate antagonists—effects of exogenous antagonist and synorphin 1–13.Neuropeptides 5: 307–310, 1987.Google Scholar
  76. 76.
    Fallis RF, Fisher M, Lobo RA. A double-blind trial of naloxone in the treatment of acute stroke.Stroke 15: 627–629, 1984.PubMedGoogle Scholar
  77. 77.
    Jabaily J, Davis JN. Naloxone administration to patients with acute stroke.Stroke 15: 36–39, 1984.PubMedGoogle Scholar
  78. 78.
    Adams HP Jr, Olinger CP, Barsan WG, Butler MJ, Graff-Radford NR, Brott TG et al. A dose-escalation study of large doses of naloxone for treatment of patients with acute cerebral ischemia.Stroke 17: 404–409, 1986.PubMedGoogle Scholar
  79. 79.
    Olinger CP, Adams HP Jr, Brott TG, Biller J, Barsan WG, Toffol GJ et al. High-dose intravenous naloxone for the treatment of acute ischemic stroke.Stroke 21: 721–725, 1990.PubMedGoogle Scholar
  80. 80.
    Federico F, Lucivero V, Lamberti P, Fiore A, Conte C. A double blind randomized pilot trial of naloxone in the treatment of acute ischemic stroke.Ital J Neurol Sci 12: 557–563, 1991.PubMedGoogle Scholar
  81. 81.
    Clark W, Coull B, Karukin M, Hendin B, Kelly BR, Rosing H et al. Randomized trial of Cervene, a κ receptor-selective opioid antagonist, in acute ischemic stroke.J Stroke Cerebrovasc Dis 6: 35–40, 1996.PubMedGoogle Scholar
  82. 82.
    Clark W, Ertag W, Orecchio E, Raps E. Cervene in acute ischemic stroke: results of a double-blind, placebo-controlled, dose-comparison study.J Stroke Cerebrovasc Dis 8: 224–230, 1999.PubMedGoogle Scholar
  83. 83.
    Clark WM, Raps EC, Tong DC, Kelly RE, for the Cervene Stroke Study Investigators. Cervene (nalmefene) in acute ischemic stroke: final results of a phase III efficacy study.Stroke 31: 1234–1239, 2000.PubMedGoogle Scholar
  84. 84.
    Green AR, Hainsworth AH, Jackson DM. GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke.Neuropharmacology 39: 1483–1494, 2000.PubMedGoogle Scholar
  85. 85.
    Moody IF, Skolnick P. Clomethiazole: neurochemical actions at the gamma-aminobutyric acid complex.Br J Pharmacol 164: 153–158, 1989.Google Scholar
  86. 86.
    Cross AF, Jones JA, Baldwin HA, Green AR. Neuroprotective activity of clomethiazole following transient forebrain ischemia in the gerbil.Br J Pharmacol 104: 406–411, 1991.PubMedGoogle Scholar
  87. 87.
    Marshall JWB, Cross AF, Murray TK, Ridley RM. Functional benefit from clomethiazole treatment after focal cerebral ischaemia in a non-human primate species [abstract].Stroke 29: 330, 1998.Google Scholar
  88. 88.
    Wester P, Strand T, Wahlgren NG, Ashwood T, Osswald G. An open study of clomethiazole in patients with acute cerebral infarction.Cerebrovasc Dis 8: 188–190, 1998.PubMedGoogle Scholar
  89. 89.
    Sydserff SG, Cross AJ, Murray TK, Jones JA, Green AR et al. Clomethiazole is neuroprotective in models of global and focal cerebral ischemia when infused at doses producing clinically relevant plasma concentrations.Brain Res 862: 59–62, 2000.PubMedGoogle Scholar
  90. 90.
    Wahlgren NG, Ranasinha KW, Rosolacci T, Franke CL, van Erven PM, Ashwood T et al, for the CLASS Study Group. Clonethiazole Acute Stroke Study (CLASS): results of a randomized, controlled trial of clomethiazole versus placebo in 1360 acute stroke patients.Stroke 30: 21–28, 1999.PubMedGoogle Scholar
  91. 91.
    Wahlgren NG, Diez-Tejedor E, Teitelbaum J, Arboix A, Leys D, Ashwood T et al, for the CLASS Study Group. Results in 95 hemorrhagic stroke patients included in CLASS, a controlled trial of clomethiazole versus placebo in acute stroke patients.Stroke 31: 82–85, 2000.PubMedGoogle Scholar
  92. 92.
    Lyden P, Shuaib A, Ng K, Levin K, Atkinson RP, Rajput A et al. The CLASS-I/H/T Investigators: Clomethiazole Acute Stroke Study in ischemic stroke (CLASS-I): final results.Stroke 33: 122–128, 2002.PubMedGoogle Scholar
  93. 93.
    Lodder J, Raak van EPM, Kessels F. Early GABA-ergic activation study in stroke. Abstract presented at the Ongoing Clinical Trials Session, 26th International Stroke Conference, Fort Lauderdale, FL, February, 2001.Google Scholar
  94. 94.
    Hall ED, Pazara KE, Braughler JM. 21-aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils.Stroke 19: 997–1002, 1988.PubMedGoogle Scholar
  95. 95.
    Zuccarello M, Marsch JT, Schmitt G, Woodward J, Anderson DK. Effect of the 21-aminosteroid U-74006 on cerebra vasospasm following subarachnoid hemorrhage.J Neurosurg 71: 98–104, 1989.PubMedGoogle Scholar
  96. 96.
    Hall ED, Andrus PK, Smith SL, Oostveen JA, Scherch HM, Lutzke BS et al. Neuroprotective efficacy of microvascularly-localized versus brain-penetrating antioxidants.Acta Neurochir Suppl (Wien) 66: 107–113, 1996.Google Scholar
  97. 97.
    The STIPAS Investigators. Safety study of tirilazad mesylate in patients with acute ischemia stroke (STIPAS).Stroke 25: 418–423, 1994.Google Scholar
  98. 98.
    The RANTTAS Investigators. A randomized trial of tirilazad mesylate in patients with acute stroke (RANTTAS).Stroke 27: 1453–1458, 1996.Google Scholar
  99. 99.
    Haley EC, on behalf of the RANTTAS II Investigators. High-dose tirilazad for acute stroke (RANTTAS II).Stroke 29: 1256–1257, 1998PubMedGoogle Scholar
  100. 100.
    Tirilazad International Steering Committee. Tirilazad mesylate in acute ischemic stroke: a systematic review.Stroke 32: 2257–2265, 2000.Google Scholar
  101. 101.
    Van der Worp HB, Kappelle LJ, Algra A, Bar PR, Orgogozo JM, Ringelstein EB et al, on behalf of the TESS and TESS II Investigators. The effect of tirilazad mesylate on infarct volume of patients with acute ischemic stroke.Neurology 58: 133–135, 2002.PubMedGoogle Scholar
  102. 102.
    Beck T, Bielenberg GW. Failure of the lipid peroxidation inhibitor U74006F to improve neurological outcome after transient forebrain ischemia in the rat.Brain Res 532: 336–338, 1990.PubMedGoogle Scholar
  103. 103.
    Ichikawa S, Omura K, Katayama T, Okamura N, Ontsuka T, Ishibashi S et al. Inhibition of superoxide anion production in guinea pig polymorphonuclear leudocytes by a seleno-organic compound, ebselen.J Pharmacobio-Dyn 10: 595–597, 1987.PubMedGoogle Scholar
  104. 104.
    Hattori R, Inoue R, Sase K, Eizawa H, Kosuga K, Aoyama T et al. Preferential inhibition of inducible nitric oxide synthase by ebselen.Eur J Pharmacol 267: R1-R2, 1994.PubMedGoogle Scholar
  105. 105.
    Maiorino M, Roveri A, Coassin M, Ursini F. Kinetic mechanism and substrate specificity of glutathione peroxidase activity of ebselen (PZ51).Biochem Pharmacol 37: 2267–2271, 1988.PubMedGoogle Scholar
  106. 106.
    Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T et al, for the Ebselen Study Group. Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial.Stroke 29: 12–17, 1998.PubMedGoogle Scholar
  107. 107.
    Zhao Z, Cheng M, Maples KR, Ma JY, Buchan AM et al. NXY-059, a novel free radical trapping compound, reduces cortical infarction after permanent focal cerebral ischemia in the rat.Brain Res 909: 46–50, 2001.PubMedGoogle Scholar
  108. 108.
    Sydserff SG, Borelli AR, Green AR, Cross AJ. Effect of NSY-059 on infarct volume after transient or permanent middle cerebral artery occlusion in the rat: Studies on dose, plasma concentration and therapeutic time window.Br J Pharmacol 135: 103–112, 2002.PubMedGoogle Scholar
  109. 109.
    Marshall JWB, Duffin KJ, Green AR, Ridley RM. NXY-059, a free radical-trapping agent, substantially lessens the functional disability resulting from cerebral ischemia in a primate species.Stroke 32: 190–198, 2001.PubMedGoogle Scholar
  110. 110.
    Cross AJ. The effect of increasing doses of NXY-059 on infarct size following permanent middle cerebral artery occlusion in the rat.AstraZeneca Report. 2000.Google Scholar
  111. 111.
    Lees KR, Sharma AK, Barer D, Ford GA, Kostulas V, Cheng YF et al, for the SA-NXY-0003 Investigators. Tolerability and pharmacokinetics of the nitrone NXY-059 in patients with acute stroke.Stroke 32: 675–680, 2001.PubMedGoogle Scholar
  112. 112.
    Okada Y, Copeland BR, More E, Tung MM, Thomas WS, del Zoppo GJ et al. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion.Stroke 25: 202–211, 1994.PubMedGoogle Scholar
  113. 113.
    Zhang RL, Chopp M, Zaloga C, Zhang ZG, Jiang N, Gautam SC et al. The temporal profiles of ICAM-1 protein and mRNA expression after transient MCA occlusion in the rat.Brain Res 682: 182–188, 1995.PubMedGoogle Scholar
  114. 114.
    Soriano SG, Coxon A, Wang YF, Frosch MP, Lipton SA, Hickey PR et al. Mice deficient in Mac-1(CD11b/CD18) are less susceptible to cerebral ischemia/reperfusion injury.Stroke 30: 134–139, 1999.PubMedGoogle Scholar
  115. 115.
    Kitagawa K, Matsumoto M, Mabuchi T, Yagita Y, Ohtsuki T, Hori M et al. Deficiency of intercellular adhesion molecule-1 attenuates microcirculatory disturbance and infarction size in focal cerebral ischemia.J Cereb Blood Flow Metab 18: 1336–1345, 1998.PubMedGoogle Scholar
  116. 116.
    Clark WM, Madden KP, Rothlein R, Zivin JA. Reduction of central nervous system ischemic injury in rabbits using leukocyte adhesion antibody treatment.Stroke 22: 877–883, 1991.PubMedGoogle Scholar
  117. 117.
    Zhang RL, Chopp M, Jiang N, Tang WX, Prostak J, Manning AM et al. Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat.Stroke 26: 1438–1442, 1995.PubMedGoogle Scholar
  118. 118.
    Zhang RL, Zhang ZG, Chopp M, Zivin JA. Thrombolysis with tissue plasminogen activator alters adhesion molecule expression in the ischemic rat brain.Stroke 30: 624–629, 1999.PubMedGoogle Scholar
  119. 119.
    Fassbender K, Mossner R, Motsch L, Kischka V, Garu A, Hennerici M. Circulating selectin- and immunoglobulin-type adhesion molecules in acute ischemic stroke.Stroke 26: 1361–1364, 1995.PubMedGoogle Scholar
  120. 120.
    Bitsch A, Klene W, Murtada L, Prange H, Rieckmann P. A longitudinal prospective study of soluble adhesion molecules in acute stroke.Stroke 29: 2129–2135, 1998.PubMedGoogle Scholar
  121. 121.
    Frijns CJ, Kappelle LJ, van Gijn J, Nieuwenhuis HK, Sixma JJ, Fijnheer R. Soluble adhesion molecules reflect endothelial cell activation in ischemic stroke and in carotid atherosclerosis.Stroke 28: 2214–2218, 1997.PubMedGoogle Scholar
  122. 122.
    Lindsberg PJ, Carpen O, Paetau A, Karjalainen-Lindsberg ML, Kaste M. Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke.Circulation 94: 939–945, 1996.PubMedGoogle Scholar
  123. 123.
    Schneider D, Berrouschot J, Brandt T, Hacke W, Ferbert A, Norris SH. Safety, pharmacokinetics and biological activity of enlimomab (anti-ICAM-1 antibody): an open-label, dose escalation study in patients hospitalized for acute stroke.Eur Neurol 40: 78–83, 1998.PubMedGoogle Scholar
  124. 124.
    Enlimomab Acute Stroke Trial Investigators. Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial.Neurology 57: 1428–1434, 2001Google Scholar
  125. 125.
    Furuya K, Takeda H, Azhar S, McCarron RM, Chen Y, Ruetzler CA et al. Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study.Stroke 32: 2665–2674, 2001.PubMedGoogle Scholar
  126. 126.
    Manabat C, Han BH, Wendland M, Derugin N, Fox CK, Choi J et al. Reperfusion differentially induces caspases-3 activation in ischemic core and penumbra after stroke in immature brain.Stroke 34: 207–213, 2003.PubMedGoogle Scholar
  127. 127.
    Robertson GS, Crocker SJ, Nicholson DW, Schulz JB. Neuroprotection by the inhibition of apoptosis.Brain Pathol 10: 283–292, 2000.PubMedGoogle Scholar
  128. 128.
    Satoh S, Ikegaki I, Suzuki Y, Asano T, Shibuya M, Hidaka H. Neuroprotective properties of a protein kinase inhibitor against ischaemia-induced neuronal damage in rats and gerbils.Br J Pharmacol 118: 1592–1596, 1996.PubMedGoogle Scholar
  129. 129.
    Wang KKW, Nath R, Rosner A, Raser J, Buroker-Kilgore M, Hajimohammadreza I et al. An alpha-mercaptoacrylic acid derivative is a selective nonpeptide cell-permeable calpain inhibitor and is neuroprotective.Proc Natl Acad Sci USA 93: 6687–6692, 1996.PubMedGoogle Scholar
  130. 130.
    Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S et al. SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia.J Pharmacol Exp Ther 296: 312–321, 2001.PubMedGoogle Scholar
  131. 131.
    Markgraf CG, Velayo NL, Johnson MP, McCarty DR, Medhi S, Koehl JR et al. Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats.Stroke 29: 152–158, 1998.PubMedGoogle Scholar
  132. 132.
    Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J et al. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia.Proc Natl Acad Sci USA 95: 15769–15774, 1998.PubMedGoogle Scholar
  133. 133.
    Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window.Proc Natl Acad Sci USA 96: 13496–13500, 1999.PubMedGoogle Scholar
  134. 134.
    Wang C, Yang T, Noor R, Shuaib A. Delayed minocycline but not delayed mild hypothermia protects against embolic stroke.BMC Neurol 2: 2, 2002.PubMedGoogle Scholar
  135. 135.
    Asai A, Qiu J, Narita Y, Chi S, Saito N, Shinoura N et al. High level calcineurin activity predisposes neuronal cells to apoptosis.J Biol Chem 274: 34450–34458, 1999.PubMedGoogle Scholar
  136. 136.
    Herr I, Martin-Villalba A, Kurz E, Roncaioli P, Schenkel J, Cifone MG et al. FK506 prevents stroke-induced generation of ceramide and apoptosis signaling.Brain Res 826: 210–219, 1999.PubMedGoogle Scholar
  137. 137.
    Bochelen D, Rudin M, Sauter A. Calcineurin inhibitors FK506 and SDZ ASM 981 alleviate the outcome of focal cerebral ischemic/reperfusion injury.J Pharmacol Exp Ther 288: 653–659, 1999.PubMedGoogle Scholar
  138. 138.
    Ebisu T, Katsuta K, Fujikawa A, Aoki I, Vaneda M, Naruse S et al. Early and delayed neuroprotective effects of FK506 on experimental focal ischemia quantitatively assessed by diffusion-weighted MRI.Magn Reson Imaging 19: 153–160, 2001.PubMedGoogle Scholar
  139. 139.
    McCarter JF, McGregor AL, Jones PA, Sharkey J. FK506 protects brain tissue in animal models of stroke.Transplant Proc 33: 2390–2392, 2001.PubMedGoogle Scholar
  140. 140.
    Arii T, Kamiya T, Arii K, Ueda M, Nito C, Katsura KI et al. Neuroprotective effect of immunosuppressant FK506 in transient focal ischemia in rat: Therapeutic time window for FK506 in transient focal ischemia.Neurol Res 23: 755–760, 2001.PubMedGoogle Scholar
  141. 141.
    Takamatsu H, Tsukada H, Noda A, Kakiuchi T, Nishiyama S, Nishimura S et al. FK506 attenuates early ischemic neuronal death in a monkey model of stroke.J Nucl Med 42: 1833–1840, 2001.PubMedGoogle Scholar
  142. 142.
    Limbourg FP, Huang Z, Plumier JC, Simoncini T, Fujioka M, Tuckermann J et al. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids.J Clin Invest 110: 1729–1738, 2002.PubMedGoogle Scholar
  143. 143.
    Mulley G, Wilcox RG, Mitchell JR. Dexamethasone in acute stroke.BMJ 2: 994–996, 1978.PubMedGoogle Scholar
  144. 144.
    Norris JW, Hachinski VC. High dose steroid treatment in cerebral infarction.BMJ 292: 21–23, 1986.PubMedGoogle Scholar
  145. 145.
    Qizilbash N, Lewington SL, Lopez-Arrieta JM. Corticosteroids for acute ischaemic stroke.Cochrane Database Syst Rev CD000064-2, 2000Google Scholar
  146. 146.
    Vayssiere BM, Dupont S, Choquart A, Petit F, Garcia T, Marchandeau C et al. Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit anti-inflammatory activity in vivo.Mol Endocrinol 11: 1245–1255, 1997.PubMedGoogle Scholar
  147. 147.
    Belayev L, Liu Y, Zhao W, Busto R, Ginsburg MD. Human albumin therapy of acute ischemic stroke: marked neuroprotective efficacy at moderate doses and with a broad therapeutic window.Stroke 32: 553–560, 2001.PubMedGoogle Scholar
  148. 148.
    Zoellner H, Hofler M, Beckmann R, Hufnagl P, Vanyek E, Bielek E et al. Serum albumin is a specific inhibitor of apoptosis in human endothelial cells.J Cell Sci 109: 2571–2580, 1996.PubMedGoogle Scholar
  149. 149.
    Rodriguez de Turco IB, Belayev L, Liu Y, Busto R, Parkins N, Bazan NG et al. Systemic fatty acid responses to transient focal cerebral ischemia: influence of neuroprotectant therapy with human albumin.J Neurochem 83: 515–524, 2002.Google Scholar
  150. 150.
    Lenzi GL, Grigoletto F, Gent M, Roberts RS, Walker MD, Easton JD et al and the Early Stroke Trial Group. Early treatment of stroke with monosialoganglioside GM-1: Efficacy and safety results of the early stroke trial.Stroke 25: 1552–1558, 1994.PubMedGoogle Scholar
  151. 151.
    Schwab M, Antonow-Schorke I, Zwiener U, Bauer R. Brain-derived peptides reduce the size of cerebral infarction and loss of MAP2 immunoreactivity after focal ischemia in rats.J Neural Transm Suppl 53: 299–311, 1998.PubMedGoogle Scholar
  152. 152.
    Ladurner F. Neuroprotection in acute ischaemic stroke [abstract].Stroke 32: 323, 2001.Google Scholar
  153. 153.
    Rao AM, Hatcher JF, Dempsey RJ. CDP-choline: neuroprotection in transient forebrain ischemia of gerbils.J Neurosci Res 58: 697–705, 1999.PubMedGoogle Scholar
  154. 154.
    Adibhatla RM, Hatcher JF, Dempsey RJ. Citicoline: neuroprotective mechanisms in cerebral ischemia.J Neurochem 80: 12–23, 2002.PubMedGoogle Scholar
  155. 155.
    Krupinski J, Ferrer I, Barrachina M, Secades JJ, Mercadal J, Lozano R et al. CDP-choline reduces procaspase and cleaved caspae-3 expression, nuclear DNA fragmentation, and specific PARP-cleaved products of caspase activation following middle cerebral artery occlusion in the rat.Neuropharmacology 42: 846–854, 2002.PubMedGoogle Scholar
  156. 156.
    Clark W, Warach S, for the Citicholine Study Group. Randomized dose response trial of citicholine in acute ischemic stroke patients.Neurology 49: 671–678, 1997.PubMedGoogle Scholar
  157. 157.
    Clark WM, Williams BJ, Selzer KA et al, for the Citicoline Stroke Study Group. A randomized efficacy trial of citicoline in patients with acute ischemic stroke.Stroke 30: 2592–2597, 1999.PubMedGoogle Scholar
  158. 158.
    Clark WM, Wechsler LR, Sabounjian LA, Schwiderski UE, for the Citicoline Stroke Study Group. A phase III randomized efficacy trial of 2000 mg citicoline in acute ischemic stroke patients.Neurology 57: 1595–1602, 2001.PubMedGoogle Scholar
  159. 159.
    Warach S, Pettigrew LC, Dashe JF, Pullicino P, Lefkowitz DM, Sabounjian L et al. Effect of citicoline on ischemic lesions as measured by diffusion-weighted magnetic resonance imaging. Citicoline 010 Investigators.Ann Neurol 48: 713–722, 2000.PubMedGoogle Scholar
  160. 160.
    Corso A, Arena M, Ventimiglia A, Bizzarro G, Campo G, Rodolico F. CDP-choline for cerebrovascular disorders: Clinical evaluation and evaluation of electrophysiological symptomology.Clin Ter 102: 379–386, 1982.PubMedGoogle Scholar
  161. 161.
    Tazaki Y, Sakai F, Otomo E, Kutsuzawa T, Kameyama M, Omae T et al. Treatment of acute cerebral infarction with a choline precursor in a multicenter double-blind placebo-controlled study.Stroke 19: 211–216, 1988.PubMedGoogle Scholar
  162. 162.
    Saver J, Wilterdink J. Choline precursors in acute and subacute stroke: a meta-analysis.Stroke 33: 353, 2002.Google Scholar
  163. 163.
    Davalos A, Castillo J, Alvarez-Sabin J, Secades JJ, Mercadal J, Lopez S et al. Oral citicoline in acute ischemic stroke: an individual patient data pooling analysis of clinical trials.Stroke 33: 2850–2857, 2002.PubMedGoogle Scholar
  164. 164.
    Andersen M, Overgaard K, Meden P, Boysen G. Effects of citicoline combined with thrombolytic therapy in a rat embolic stroke model.Stroke 30: 1464–1471, 1999.PubMedGoogle Scholar
  165. 165.
    Siren AL, Ehrenreich H. Erythropoietin-a novel concept for neuroprotection.Eur Arch Psychiatry Clin Neurosci 251: 179–184, 2001.PubMedGoogle Scholar
  166. 166.
    Sakanaka M, Wen TC, Matsuda S, Morishita E, Nagao M et al. In vitro evidence that erythropoietin protects neurons from ischemic damage.Proc Natl Acad Sci USA 95: 4635–4640, 1998.PubMedGoogle Scholar
  167. 167.
    Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death.Neuroscience 76: 105–116, 1997.PubMedGoogle Scholar
  168. 168.
    Brines ML, Ghezzi P, Keenan S, Angello D, de Lanerolle M, Cerami C et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury.Proc Natl Acad Sci USA 97: 10526–10531, 2000.PubMedGoogle Scholar
  169. 169.
    Siren AL, Fratelli M, Brines M et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress.Proc Natl Acad Sci USA 98: 4044–4049, 2000.Google Scholar
  170. 170.
    Ay I, Sugimori H, Finklestein SP. Intravenous basic fibroblast growth factor (bFGF) decreases DNA fragmentation and prevents downregulation of Bcl-2 expression in the ischemic brain following middle cerebral artery occlusion in rats.Mol Brain Res 87: 71–80, 2001.PubMedGoogle Scholar
  171. 171.
    Kawamata T, Kietrich WD, Schallert T, Gotts JE, Cocke RR, Benowitz LI et al. Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction.Proc Natl Acad Sci USA 94: 8179–8184, 1997.PubMedGoogle Scholar
  172. 172.
    Li Q, Stephenson D. Postischemic administration of basic fibroblast growth factor improves sensorimotor function and reduces infarct size following permanent focal cerebral ischemia in the rat.Exp Neurol 177: 531–537, 2002.PubMedGoogle Scholar
  173. 173.
    Schabitz WR, Li F, Irie K, Sandage BW Jr, Locke KW, Fisher M et al. Synergistic effects of a combination of low-dose basic fibroblast growth factor and citicoline after temporary experimental focal ischemia.Stroke 30: 427–431, 1999.PubMedGoogle Scholar
  174. 174.
    Ma J, Aui J, Hirt L, Dalkara T, Moskowitz MA. Synergistic protective effect of caspases inhibitors and bFGF against brain injury induced by transient focal ischaemia.Br J Pharmacol 133: 345–350, 2001.PubMedGoogle Scholar
  175. 175.
    Bogousslavsky J, Victor SJ, Salinas EO, Pallay A, Ponnan GA, Fieschi C et al, for the European-Australian Fiblast in Acute Stroke Group. Fiblast (trafermin) in acute stroke: results of the Eur-Australian phase II/III safety and efficacy trial.Cerebrovasc Dis 14: 239–251, 2002.PubMedGoogle Scholar
  176. 176.
    Song BW, Vinters HV, Wu D, Pardridge WM. Enhanced neuro-protective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector.J Pharmacol Exp Ther 301: 605–610, 2002.PubMedGoogle Scholar
  177. 177.
    Krupinski J, Issa R, Bujny T, Slevin M, Kumar P, Kamar S et al. A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans.Stroke 28: 564–573, 1997.PubMedGoogle Scholar
  178. 178.
    Semkova I, Krieglstein J. Neuroprotection mediated via neurotrophic factors and induction of neurotrophic factors.Brain Res Rev 30: 176–188, 1999.PubMedGoogle Scholar
  179. 179.
    Wang Y, Chang CF, Morales M, Chang YH, Hoffer J. Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury.Ann N Y Acad Sci 962: 423–437, 2002.PubMedGoogle Scholar
  180. 180.
    Kilic E, Dietz GPH, Hermann DM, Bahr M. Intravenous TAT-Bcl-XL is protective after middle cerebral artery occlusion in mice.Ann Neurol 52: 617–622, 2002.PubMedGoogle Scholar
  181. 181.
    Busto R, Dietrich WD, Globus MY, Valdes I, Scheinberg P, Ginsberg MD. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury.J Cereb Blood Flow Metab 7: 729–738, 1987.PubMedGoogle Scholar
  182. 182.
    Buchan A, Pulsinell WA. Hypothermia but not N-methyl-d-as-partate antagonist MK-801 attenuates neuronal damage in gerbils subjected to transient global ischemia.J Neurosci 10: 311–316, 1990.PubMedGoogle Scholar
  183. 183.
    Minamisawa H, Nordstrom CH, Smith ML, Siesjo BK. The influence of mild body and brain hypothermia on ischemic brain damage.J Cereb Blood Flow Metab 10: 365–374, 1990.PubMedGoogle Scholar
  184. 184.
    Coimbra C, Wielock T. Hypothermia ameliorates neuronal survival when induced 2 hours after ischemia in the rat.Acta Physiol Scand 146: 543–544, 1992.PubMedGoogle Scholar
  185. 185.
    Meden P, Overguard K, Pedersen H, Boysen G. The influence of body temperature on infarct volume and thrombolytic therapy in a rat embolic stroke model.Brain Res 647: 131–138, 1994.PubMedGoogle Scholar
  186. 186.
    Corbett D, Nurse S, Colbourne F. Hypothermic neuroprotection: a global ischemia study using 18- to 20-month-old gerbils.Stroke 28: 2238–2242, 1997.PubMedGoogle Scholar
  187. 187.
    Barone FC, Feuerstein GZ, White RF. Brain cooling during transient focal ischemia provides complete neuroprotection.Neurosci Biobehav Rev 21: 31–44, 1997.PubMedGoogle Scholar
  188. 188.
    Maier CM, Ahern KB, Cheng ML, Lee JE, Yenari MA, Steinberg GK et al. Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia: Effects of neurologic outcome, infarct size, apoptosis, and inflammation.Stroke 29: 2171–2180, 1998.PubMedGoogle Scholar
  189. 189.
    Corbett D, Hamilton M, Colbourne F. Persistent neuroprotection with prolonged postischemic hypothermia in adult rats subjected to transient middle cerebral artery occlusion.Exp Neurol 163: 200–206, 2000.PubMedGoogle Scholar
  190. 190.
    Kawai N, Okauchi M, Morisaki K, Nagao S. Effects of delayed intraischemic and postischemic hypothermia on a focal model of transient cerebral ischemia in rats.Stroke 31: 1982–1989, 2000.PubMedGoogle Scholar
  191. 191.
    Nakashima K, Todd MM. Effects of hypothermia on the rate of excitatory amino acid release after ischemic depolarization.Stroke 27: 913–918, 1996.PubMedGoogle Scholar
  192. 192.
    Koizumi H, Fujisawa H, Ito H, Maekawa T, Pi X, Bullock R. Effects of mild hypothermia on cerebral blood flow-independent changes in cortical extracellular levels of amino acids following contusion trauma in the rat.Brain Res 747: 304–312, 1997.PubMedGoogle Scholar
  193. 193.
    Sick TJ, Xu G, Perez-Pinzon AM. Mild hypothermia improves recovery of cortical extracellular potassium ion activity and excitability after middle cerebral artery occlusion in the rat.Stroke 30: 2416–2421, 1999.PubMedGoogle Scholar
  194. 194.
    Prakasa Babu PP, Yoshida Y, Su M, Segura M, Kawamura S, Yasui N et al. Immunohistochemical expression of Bcl-2, Bax and cytochrome c following focal cerebral ischemia and effect of hypothermia in rat.Neurosci Lett 291: 196–200, 2000.Google Scholar
  195. 195.
    Ishikawa M, Sekizuka E, Sato S, Yamaguchi N, Inamasu J, Bertalanffy H et al. Effects of moderate hypothermia on leukocyte-endothelium interaction in the rat pial microvasculature after transient middle cerebral artery occlusion.Stroke 30: 1679–1686, 1999.PubMedGoogle Scholar
  196. 196.
    Inamasu J, Suga S, Sato S, Horiguchi T, Akaji K, Mayanogi K et al. Post-ischemic hypothermia delayed neutrophil accumulation and microglial activation following transient focal cerebral ischemia in rats.J Neuroimmunol 109: 66–74, 2000.PubMedGoogle Scholar
  197. 197.
    Zeiner A, Holzer M, Sterz F, Behringer W, Schorkuber W, Mullner M et al. for the Hypothermia After Cardiac Arrest (HACA) Study Group. Mild resuscitative hypothermia to improve neurological outcome after cardiac arrest.Stroke 31: 86–94, 2000.PubMedGoogle Scholar
  198. 198.
    Felberg RA, Krieger DW, Chuang R, Persse PE, Burgin WS, Hickenbottom SL et al. Hypothermia after cardiac arrest: feasibility and safety of an external cooling protocol.Circulation 104: 1799–1804, 2001.PubMedGoogle Scholar
  199. 199.
    Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.N Engl J Med 346: 557–563, 2002.PubMedGoogle Scholar
  200. 200.
    The Hypothermia After Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest.N Engl J Med 346: 549–556, 2002.Google Scholar
  201. 201.
    Colbourne F, Li H, Buchan AM. Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats.J Cereb Blood Flow Metab 19: 742–749, 1999.PubMedGoogle Scholar
  202. 202.
    Azzimondi G, Bassein L, Nonino F, Fiorani L, Vignatelli L, Re G et al. Fever in acute stroke worsens prognosis.Stroke 26: 2040–2043, 1995.PubMedGoogle Scholar
  203. 203.
    Jorgensen HS, Reith J, Pedersen PM, Nakayama H, Olsen TS. Body temperature and outcome in stroke patients [letter].Lancet 348: 193, 1996.PubMedGoogle Scholar
  204. 204.
    Reith J, Jorgensen HS, Pedersen PM, Nakayama H, Raaschou HO, Jeppesen LL et al. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome.Lancet 347: 422–425, 1996.PubMedGoogle Scholar
  205. 205.
    Wang Y, Lim LL, Levi C, Heller RF, Fischer J. Influence of admission body temperature on stroke mortality.Stroke 31: 404–409, 2000.PubMedGoogle Scholar
  206. 206.
    Schwab S, Schwarz S, Spranger M, Keller E, Bertram M, Hacke W. Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction.Stroke 29: 2461–2466, 1998.PubMedGoogle Scholar
  207. 207.
    Kammersgaard LP, Rasmussen BH, Jorgensen HS, Reith J, Weber U, Olsen TS. Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling: a case-control study.Stroke 31: 2251–2256, 2000.PubMedGoogle Scholar
  208. 208.
    Schwab S, Georgiadis D, Berrouschot J, Schellinger PB, Graffagnino C, Mayer SA. Feasibility and safety of moderate hypothermia after massive hemispheric infarction.Stroke 32: 2033–2035, 2001.PubMedGoogle Scholar
  209. 209.
    Steiner T, Friede T, Aschoff A, Schellinger PD, Schwab S, Hacke W. Effect and feasibility of controlled rewarming after moderate hypothermia in stroke patients with malignant infarction of the middle cerebral artery.Stroke 32: 2833–2835, 2001.PubMedGoogle Scholar
  210. 210.
    Kreiger DW, DeGeorgia MA, Abou-Chebl A, Andrefsky JC, Sila CA, Katzan IL et al. Cooling for Acute Ischemic Brain Damage (COOL AID): an open pilot study of induced hypothermia in acute ischemic stroke.Stroke 32: 1847–1854, 2001.Google Scholar
  211. 211.
    Georgiadis D, Schwarz S, Kollmar R, Schwab S. Endovascular cooling for moderate hypothermia in patients with acute stroke: first results of a novel approach.Stroke 32: 2550–2553, 2001.PubMedGoogle Scholar
  212. 212.
    Strong R, Grotta JC, Aronowski J. Combination of low dose ethanol and caffeine protects brain from damage produced by focal ischemia in rats.Neuropharmacology 39: 515–522, 2000.PubMedGoogle Scholar
  213. 213.
    Aronowski J, Strong R, Shirzadi A, Grotta JC. Ethanol plus caffeine (caffeinol) for treatment of ischemic stroke: preclinical experience.Stroke 34: 1246–1251, 2003.PubMedGoogle Scholar
  214. 214.
    Piriyawat P, Labiche LA, Burgin WS, Aronowski JA, Grotta JC. Pilot dose-escalation study of caffeine plus ethanol (Caffeinol) in acute ischemic stroke.Stroke 34: 1242–1245, 2003.PubMedGoogle Scholar
  215. 215.
    Bowes M, Burhop K, Zivin J. Diaspirin cross-linked hemoglobin improves neurological outcome following reversible but not irreversible CNS ischemia in rabbits.Stroke 25: 2253–2257, 1994.PubMedGoogle Scholar
  216. 216.
    Cole D, Schell R, Przybelski R, Drummond JC, Bradley K. Focal cerebral ischemia in rats: effect of hemodilution with cross-linked hemoglobin on CBF.J Cereb Blood Flow Metab 12: 971–976, 1992.PubMedGoogle Scholar
  217. 217.
    Cole D, Schell R, Drummond J, Reynolds L. Focal cerebral ischemia in rats: effect of hypervolemic hemodilution with diaspirin crossed-linked hemoglobin versus albumin on brain injury and edema.Anesthesiology 78: 335–342, 1993.PubMedGoogle Scholar
  218. 218.
    Grotta J, Aronowski J. DCLHb for focal ischemia and reperfusion.Cerebrovasc Dis 6: 189, 1996.Google Scholar
  219. 219.
    Saxena R, Wijnhoud AD, Carton H, Hacke W, Kaste M, Przybelski RJ et al. Controlled safety study of a hemoglobin-based oxygen carrier, DCLHb, in acute ischemic stroke.Stroke 30: 993–996, 1999.PubMedGoogle Scholar
  220. 220.
    Singhal AB, Dijkhuizen RM, Rosen B, Lo EH. Normobaric hyperoxia reduces MRI diffusion abnormalities and infarct size in experimental stroke.Neurology 58: 945–952, 2002.PubMedGoogle Scholar
  221. 221.
    Atochin DN, Fisher D, Demchenko IT, Thom SR. Neutrophil sequestration and the effect of hyperbaric oxygen in a rat model of temporary middle cerebral artery occlusion.Undersea Hyperb Med 27: 185–190, 2000.PubMedGoogle Scholar
  222. 222.
    Badr AE, Yin W, Mychaskiw G, Zhang JH. Effect of hyperbaric oxygen on striatal metabolites: A microdialysis study in awake freely moving rats after MCA occlusion.Brain Res 916: 85–90, 2001.PubMedGoogle Scholar
  223. 223.
    Burt JT, Kapp JP, Smith RR. Hyperbaric oxygen and cerebral infarction in the gerbil.Surg Neurol 28: 265–268, 1987.PubMedGoogle Scholar
  224. 224.
    Weinstein PR, Anderson GG, Telles DA. Results of hyperbaric oxygen therapy during temporary middle cerebral artery occlusion in unanesthetized cats.Neurosurg 20: 518–524, 1987.Google Scholar
  225. 225.
    Veltkamp R, Warner DS, Domoki F, Brinkhous AD, Toole JF, Busija DW. Hyperbaric oxygen decreases infarct size and behavioral deficit after transient focal cerebral ischemia in rats.Brain Res 853: 68–73, 2000.PubMedGoogle Scholar
  226. 226.
    Chang CF, Niu KC, Hoffer BJ, Wang Y, Borlongan CV. Hyperbaric oxygen therapy for treatment of postischemic stroke in adult rats.Exp Neurol 166: 298–306, 2000.PubMedGoogle Scholar
  227. 227.
    Sunami K, Takeda Y, Hashimoto M, Hirakawa M. Hyperbaric oxygen reduces infarct volume in rats by increasing oxygen supply to the ischemic periphery.Crit Care Med 28: 2831–2836, 2000.PubMedGoogle Scholar
  228. 228.
    Jacobson I, Lawson DD. The effect of hyperbaric oxygen on experimental cerebral infarction in the dog.J Neurosurg 20: 849–859, 1963.PubMedGoogle Scholar
  229. 229.
    Roos JA, Jackson-Friedman, Lyden P. Effects of hyperbaric oxygen on neurologic outcome for cerebral ischemia in rats.Acad Emerg Med 5: 18–24, 1998.PubMedGoogle Scholar
  230. 230.
    Hjelde A, Hjelstuen M, Haraldseth O, Martin D, Thom R, Brubakk O. Hyperbaric oxygen and neutrophil accumulation/ tissue damage during permanent focal cerebral ischaemia in rats.Eur J Appl Physiol 86: 401–405, 2002.PubMedGoogle Scholar
  231. 231.
    Anderson DC, Bottini AG, Jagiella WM, Westphal B, Ford S, Rockswold GL et al. A pilot study of hyperbaric oxygen in the treatment of human stroke.Stroke 22: 1137–1142, 1991.PubMedGoogle Scholar
  232. 232.
    Nighoghossian N, Trouillas P, Adeleine P, Salord F. Hyperbaric oxygen in the treatment of acute ischemic stroke: a double-blind pilot study.Stroke 26: 1369–1372, 1995.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2004

Authors and Affiliations

  1. 1.Stroke ProgramUniversity of Texas at Houston Medical SchoolHouston

Personalised recommendations