NeuroRX

, Volume 1, Issue 1, pp 36–45

Neuroprotection for ischemic stroke: Two decades of success and failure

  • Yu Dennis Cheng
  • Lama Al-Khoury
  • Justin A. Zivin
Article

Summary

Alteplase (rt-PA) is the first therapy successfully developed for acute stroke therapy. The success of rt-PA spurred development of new avenues for acute stroke management. For the last two decades, a great deal of attention has been paid to neuroprotective therapies. Initial preclinical studies demonstrated numerous drugs are effective for treating acute stroke in animal models; however, subsequent clinical trials have been frustrating, and none of the agents has proven effective. The various outcomes of preclinical and clinical trials have been the subject of much discussion. In this article, we review some key neuroprotective trials and the possible reasons for their failures. By identifying the discrepancies between preclinical studies and clinical trials, we may be able to set guidelines for future effective trials.

Key Words

Neuroprotection trials glutamate antagonists anti-inflammatory agents ion channel blocks free radical scavengers neurotrophic factors neural stem cells 

References

  1. 1.
    American Stroke Association. Heart Disease and Stroke Statistics-2003 Update. Dallas: American Heart Association, 2003.Google Scholar
  2. 2.
    Marshall J, Duffin KJ, Green AR, Ridley R. NXY-059, a free radical-trapping agent, substantially lessens the functional disability resulting from cerebral ischemia in a primate species.Stroke 32: 190–198, 2001.PubMedGoogle Scholar
  3. 3.
    Shimizu-Sasamata M, Kano T, Rogowska J, Wolf GL, Moskowitz MA, Lo EH. YM872, a highly water-soluble AMPA receptor antagonist, preserves the hemodynamic penumbra and reduces brain injury after permanent focal ischemia in rats.Stroke 29: 2141–2148, 1998.PubMedGoogle Scholar
  4. 4.
    Lapchak P et al. A novel thrombolytic that improves behavioral outcome after embolic strokes in rabbits.Stroke 33: 2279–2284, 2002.PubMedCrossRefGoogle Scholar
  5. 5.
    Steen P, Newberg LA, Milde JH, Michenfelder JD. Nimodipine improves cerebral blood flow and neurologic recovery after complete cerebral ischemia in the dog.J Cereb Blood Flow Metab 3: 38–43, 1983.PubMedCrossRefGoogle Scholar
  6. 6.
    Kidwell CS, Liebeskind DS, Starkman S, Saver JL. Trends in acute ischemic stroke trial through the 20th century.Stroke 32: 1349–1359, 2001.PubMedGoogle Scholar
  7. 7.
    Zivin JA, Grotta JC. Animal stroke models: they are relevant to human disease.Stroke 21: 981–983, 1990.PubMedGoogle Scholar
  8. 8.
    Gorelick PB. Neuroprotection in acute ischaemic stroke: a tale of for whom the bell tolls.Lancet 355: 1925–1926, 2000.PubMedCrossRefGoogle Scholar
  9. 9.
    Morgenstern LB. What have we learned from clinical neuroprotective trials?Neurology 57: S45-S47, 2001.PubMedGoogle Scholar
  10. 10.
    Gladstone DJ, Black SE, Hakim AM. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions.Stroke 33: 2123–2136, 2002.PubMedCrossRefGoogle Scholar
  11. 11.
    Guyot LL, Diaz FG, O’Regan MH, Song D, Phillis JW. Real-time measurement of glutamate release from the ischemic penumbra of the rat cerebral cortex using a focal middle cerebral artery occlusion model.Neurosci Lett 299: 37–40, 2001.PubMedCrossRefGoogle Scholar
  12. 12.
    Boast CS, Gerhardt B, Pastor G, Lehmann J, Etienne PE, Liebman JM. The N-methyl-D-aspartate antagonist CGS19755 and CPP reduce ischemic brain damage in gerbils.Brain Res 442: 345–348, 1988.PubMedCrossRefGoogle Scholar
  13. 13.
    Gotti B, Duverger D, Bertin J, Carter C, Dupont R, Frost J et al. Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. 1. Evidence for efficacy in models of focal cerebral ischemia.J Pharmacol Exp Ther 247: 1211–1221, 1988.PubMedGoogle Scholar
  14. 14.
    O’Neill MJ, Hicks C, Ward M. Neuroprotective effects of 7-ni-troindazole in gerbil model of global cerebral ischemia.Eur J Pharmacol 310: 115–122, 1996.PubMedCrossRefGoogle Scholar
  15. 15.
    Patat A, Molinjier P, Hergueta T, Brohier S, Zieleniuk I, Danjou P et al. Lack of amnestic, psychotomimetic or impairing effect on psychomotor performance of eliprodil, a new NMDA antagonist.Int Clin Psychopharmacol 9: 155–162, 1994.PubMedCrossRefGoogle Scholar
  16. 16.
    Aronowski J, Ostrow P, Samways E, Strong R, Zivin JA, Grotta JC. Graded bioassay for demonstration of brain rescue from experimental acute ischemia in rats.Stroke 25: 2235–2240, 1994.PubMedGoogle Scholar
  17. 17.
    Cohen RA, Hasegawa Y, Fisher M. Effects of a novel NMDA receptor antagonist on experimental stroke quantitatively assessed by spectral EEG and infarct volume.Neurol Res 16: 443–448, 1994.PubMedGoogle Scholar
  18. 18.
    Muir KW. New experimental data on the efficacy of pharmacological magnesium infusions in cerebral infarcts [abstract].Magnes Res 11: 43–56, 1998.PubMedGoogle Scholar
  19. 19.
    Saver JL, Kidwell CS, FAST-MAG Trial Group. The Field Administration of Stroke Therapy—Magnesium (FAST-MAG) phase 3 trial. Paper presented at The American Heart Association 27th International Stroke Conference, Ongoing clinical trial session, 2002.Google Scholar
  20. 20.
    Clark WM, Madden KP, Rothlein R, Zivin JA. Reduction of central nervous system ischemic injury by monoclonal antibody to intercellular adhesion molecule.J Neurosurg 75: 623–627, 1991.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang RL, Chopp M, Jiang N, Tang WX, Prostak J, Manning AM et al. Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat.Stroke 26: 1438–1443, 1995.PubMedGoogle Scholar
  22. 22.
    Jiang N, Chopp M, Chahwala S. Neutrophil inhibitory factor treatment of focal cerebral ischemia in the rat.Brain Res 788: 25–34, 1998.PubMedCrossRefGoogle Scholar
  23. 23.
    Ohta K, Graf R, Rosner G, Heiss WD. Calcium ion transients in peri-infarct depolarizations may deteriorate ion homeostasis and expand infarction in focal cerebral ischemia in cats.Stroke 32: 535–543, 2001.PubMedGoogle Scholar
  24. 24.
    The American Nimodipine Study Group. Clinical trial of nimodipine in acute ischemic stroke.Stroke 23: 3–8, 1992.Google Scholar
  25. 25.
    Mohr JP, Ogogozo JM, Harrison MJG. Meta-analysis of oral nimodipine trials in acute ischemic stroke.Cerebrovasc Dis 4: 197–203, 1994.CrossRefGoogle Scholar
  26. 26.
    Horn J, de Haan R, Vermeulen M, Limburg M. Very early nimodipine use in stroke (VENUS).Stroke 32: 461–465, 2001.PubMedCrossRefGoogle Scholar
  27. 27.
    McLean MJ, MacDonald RL. Multiple action of phenytoin on mouse spinal cord neurons in cell culture.J Pharmacol Exp Ther 227: 779–789, 1983.PubMedGoogle Scholar
  28. 28.
    Ferrendelli JA, Danials-McQueen S. Comparative actions of phenytoin and other antiepileptic drugs on potassium- and veratridine-stimulated calcium uptake in synaptosomes.J Pharmacol Exp Ther 220: 29–34, 1983.Google Scholar
  29. 29.
    Bebin M, Bleck TP. New anticonvulsant drugs: focus on flunarizine, fosphenytoin, midazolam and stiripentol.Drugs 48: 153–171, 1994.PubMedCrossRefGoogle Scholar
  30. 30.
    Gribkoff VK, Starrett JE Jr, Dworetzky SI, et al. Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels.Nat Med 7: 471–477, 2001.PubMedCrossRefGoogle Scholar
  31. 31.
    Cheng Y, Sun AY. The biomechanisms of kainate-induced neurotoxicity involved in oxidative insult.Neurochemical Res 19: 1557–1564, 1994.CrossRefGoogle Scholar
  32. 32.
    Lapchak PA, Chapman DF, Zivin JA. Pharmacological effects of the spin trap agents N-t-butyl-phenylnitrone (PBN) and 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) in a rabbit thromboembolic stroke model: combination studies with the thrombolytic tissue plasminogen activator.Stroke 32: 147–153, 2001.PubMedGoogle Scholar
  33. 33.
    Haley EC, Kassell NF, Apperson-Hansen C, Maile MH, Alves WM. A randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in North America.J Neurosurg 86: 467–474, 1997.PubMedCrossRefGoogle Scholar
  34. 34.
    Haley EC Jr. High-dose tirilazad for acute stroke (RANTTAS II). RANTTAS II investigators.Stroke 29: 1256–1257, 1998.PubMedGoogle Scholar
  35. 35.
    D’Orlando KJ, Sandage BW Jr. Citicoline (CDP-choline): mechanisms of action and effects in ischemic brain injury.Neurol Res 17: 281–284, 1995.PubMedGoogle Scholar
  36. 36.
    Schabitz W, Ali F, Irie K, Sandage BW Jr, Locke KW, Fisher M. Synergistic effects of a combination of low-dose basic fibroblast growth factor and citicoline after temporary experimental focal ischemia.Stroke 30: 427–432, 1999.PubMedGoogle Scholar
  37. 37.
    Clark WM, Warach SJ, Pettigrew LC, Gammans RE, Sabounjian LA. A randomized dose-response trial of citicoline in acute ischemic stroke patients. Citicoline Stroke Study Group.Neurology 49: 671–678, 1998.Google Scholar
  38. 38.
    Zhao Z, Cheng M, Maples KR, Ma J, Buchan A. NXY-059, a novel free radical trapping compound, reduces cortical infarction after permanent focal cerebral ischemia in the rat.Brain Res 909: 46–50, 2001.PubMedCrossRefGoogle Scholar
  39. 39.
    Marshall JWB, Duffin KJ, Green AR, Ridley RM. NXY-059, a free radical-trapping agent, substantially lessens the functional disability resulting from cerebral ischemia in a primate species.Stroke 32: 190–198, 2001.PubMedGoogle Scholar
  40. 40.
    Lapchak PA, Araujo DM, Song D, Wei J, Zivin JA. Neuroprotective effects of the spin trap agent disodium-[(tert-butylimino)m-ethyl]benzene-1,3-disulfonate N-oxide (generic NXY-059) in a rabbit small clot embolic stroke model: combination studies with the thrombolytic tissue plasminogen activator.Stroke 33: 1411–1415, 2002.PubMedCrossRefGoogle Scholar
  41. 41.
    Peeling J, Del Bigio MR, Corbett D, Green AR, Jackson DM. Efficacy of disodium 4-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke.Neuropharmacology 40: 433–439, 2001.PubMedCrossRefGoogle Scholar
  42. 42.
    Lees KR, Sharma AK, Barer D, Ford GA, Kostulas V, Cheng YF et al. Tolerability and pharmacokinetics of the nitrone NXY-059 in patients with acute stroke.Stroke 32: 675–680, 2001.PubMedGoogle Scholar
  43. 43.
    Evans JG, Feuerlein W, Glatt MM, Kanowski S, Scott DB. Chlomethiazole 25 years: recent developments and historical perspectives.Acta Psychiatr Scand Suppl 73[Suppl 327]: 198, 1986.Google Scholar
  44. 44.
    Green AR. Clomethiazole (Zendra) in acute ischemic stroke: basic pharmacology and biochemistry and clinical efficacy.Pharmacol Ther 80: 123–147, 1998.PubMedCrossRefGoogle Scholar
  45. 45.
    Lyden P, Jacoby M, Schim J, Albers G, Mazzeo P, Ashwood T et al. The clomethiazole acute stroke study in tissue-type plasminogen activator-treated stroke (CLASS-T): final results.Neurology 57: 1199–1205, 2001.PubMedGoogle Scholar
  46. 46.
    Alessandri B, Tsuchida E, Bullock RM. The neuroprotective effect of a new serotonin receptor agonist, BAY X3702, upon focal ischemic brain damage caused by acute subdural hematoma in the rat.Brain Res 845: 232–235, 1999.PubMedCrossRefGoogle Scholar
  47. 47.
    Cheng Y, Deshmukh M, D’Costa A, Demaro JA, Gidday JM, Shah A et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury.J Clin Invest 101: 1992–1999, 1998.PubMedCrossRefGoogle Scholar
  48. 48.
    Endres M, Namura S, Shimizu-Sasamata M, Waeber C, Zhang L, Gomez-Isla T et al. Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family.J Cereb Blood Flow Metab 18: 238–247, 1998.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen J, Li Y, Wang L, Lu M, Chopp M. Caspase inhibition by Z-VAD increases the survival of grafted bone marrow cells and improves functional outcome after MCAo in rats.J Neurol Sci 199: 17–24, 2002.PubMedCrossRefGoogle Scholar
  50. 50.
    Yum SW, Faden AI. Comparison of the neuroprotective effects of the N-methyl-D-aspartate antagonist MK-801 and the opiate-receptor antagonist nalmefene in experimental spinal cord ischemia.Arch Neurol 47: 277–281, 1990.PubMedGoogle Scholar
  51. 51.
    Graham SH, Shimizu H, Newman A, Weinstein P, Faden AI. Opioid receptor antagonist nalmefene stereospecifically inhibits glutamate release during global cerebral ischemia.Brain Res 632: 346–350, 1993.PubMedCrossRefGoogle Scholar
  52. 52.
    Clark WM, Raps EC, Tong DC, Kelly RE. Cervene (Nalmefene) in acute ischemic stroke: final results of a phase III efficacy study. The Cervene Stroke Study Investigators.Stroke 31: 1234–1239, 2000.PubMedGoogle Scholar
  53. 53.
    Leon A, Lipartiti M, Seren MS, Lazzaro A, Mazzari S, Koga T et al. Hypoxic-ischemic damage and the neuroprotective effects of GM1ganglioside.Stroke 21[Suppl 11]: 11195–1197, 1990.Google Scholar
  54. 54.
    Carolei A, Fieschi C, Bruno R, Toffano G. Monosialoganglioside GM1 in cerebral ischemia.Cerebrovasc Brain Metab Rev 3: 134–157, 1991.PubMedGoogle Scholar
  55. 55.
    Argentino C, Sacchetti ML, Toni D, Savoini G, D’Arcangelo E, Erminio F et al. GM1 ganglioside therapy in acute ischemic stroke: Italian Acute Stroke Study—Hemodilusion + drug.Stroke 20: 1143–1149, 1989.PubMedGoogle Scholar
  56. 56.
    Jessell TM, Sanes JR. The generation and survival of nerve cells. In: Principles of neural science (Kandel ER, Schwartz JH, Jessell TM, eds), pp 1041–1062. New York: McGraw-Hill, 2000.Google Scholar
  57. 57.
    Zhang Y, Pardridge WM. Neuroprotection in transient focal brain ischemia after delayed intravenous administration of brain-derived neurotrophic factor conjugated to a blood-brain barrier drug targeting system.Stroke 32: 1378–1384, 2001.PubMedGoogle Scholar
  58. 58.
    Wen TC, Matsuda S, Yoshimura T, Kawabe T, Sakanaka M. Ciliary neurotrophic factor prevent ischemic-induced learning disability and neuronal loss in gerbils.Neurosci Lett 191: 55–58, 1995.PubMedCrossRefGoogle Scholar
  59. 59.
    Abe K. Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury.J Cereb Blood Flow Metab 20: 1393–1408, 2000.PubMedCrossRefGoogle Scholar
  60. 60.
    Holtzman DM, Sheldon R, Cheng Y, Jaffe W, Ferriero DM. NGF protects the neonatal brain against hypoxic-ischemic injury.Ann Neurol 39: 114–122, 1996.PubMedCrossRefGoogle Scholar
  61. 61.
    Cheng Y, Gidday JM, Yan Q, Shah AR, Holtzman DM. Marked age-dependent neuroprotection by brain derived neurotrophic factor against neonatal hypoxic-ischemic brain injury.Ann Neurol 41: 521–529, 1997.PubMedCrossRefGoogle Scholar
  62. 62.
    Rosenblatt S, Irikura K, Caday DG, Finklestein SP, Moskowitz MA. Basic fibroblast growth factor (bFGF) dilates rat pial arterioles.J Cereb Blood Flow Metab 14: 70–74, 1994.PubMedCrossRefGoogle Scholar
  63. 63.
    Cuevas P, Carceller F, Ortega S et al. Hypotensive activity of fibroblast growth factor.Science 254: 1208–1210, 1991.PubMedCrossRefGoogle Scholar
  64. 64.
    Fisher M, Meadows M-E, Do T et al. Delayed treatment with intravenous basic fibroblast growth factor reduces infarct size following permanent cerebral ischemia in rats.J Cereb Blood Flow Metab 15: 953–959, 1995.PubMedCrossRefGoogle Scholar
  65. 65.
    Jiang N, Finklestein SP, Do T, Caday CG, Charette M, Chopp M. Delayed intravenous administration of basic fibroblast growth factor (bFGF) reduced infarction volume in a model of focal cerebral ischemia/reperfusion in the rat.J Neurol Sci 139: 173–179, 1996.PubMedCrossRefGoogle Scholar
  66. 66.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.Science 255: 1707–1710, 1992.PubMedCrossRefGoogle Scholar
  67. 67.
    Gould E, Reeves AJ, Graziano MSA, Gross CG. Neurogenesis in the neocortex of adult primates.Science 286: 548–552, 1999.PubMedCrossRefGoogle Scholar
  68. 68.
    Takagi Y, Nozaki K, Takahashi J, Ishikawa M, Hashimoto N. Proliferation of neuronal precursor cells in the dentate gyrus is accelerated after transient forebrain ischemia in mice.Brain Res 831: 283–287, 1999.PubMedCrossRefGoogle Scholar
  69. 69.
    Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hantano O, Kawahara N et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors.Cell 110: 429–441, 2002.PubMedCrossRefGoogle Scholar
  70. 70.
    Li Y, Chen J, Chopp M. Cell proliferation and differentiation from ependymal, subependymal and choroid plexus cells in response to stroke in rats.J Neurol Sci 193: 137–146, 2002.PubMedCrossRefGoogle Scholar
  71. 71.
    Modo M, Stroemer P, Tang E, Patel S, Hodges H. Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage.Stroke 33: 2270–2278, 2002.PubMedCrossRefGoogle Scholar
  72. 72.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons.J Neurosci Res 61: 364–370, 2000.PubMedCrossRefGoogle Scholar
  73. 73.
    Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery.Neurology 59: 514–523, 2002.PubMedGoogle Scholar
  74. 74.
    Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J et al. Transplantation of cultured human neuronal cells for patients with stroke.Neurology 55: 565–569, 2000.PubMedGoogle Scholar
  75. 75.
    The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest.N Engl J Med 346: 549–556, 2002.CrossRefGoogle Scholar
  76. 76.
    Wang Y, Lim L, Levi C, Heller R, Fisher J. Influence of admission body temperature on stroke mortality.Stroke 31: 404–409, 2000.PubMedGoogle Scholar
  77. 77.
    Krieger D, De Georgia M, Abou-Chebl, A Andrefsky JC, Sila CA, Katzan IL et al. Cooling for acute ischemic brain damage (COOL AID).Stroke 32: 1847–1854, 2001.PubMedGoogle Scholar
  78. 78.
    Georgiadis D, Schwarz S, Kollmar R, Schwab S. Endovascular cooling for moderate hypothermia in patients with acute stroke: first results of a novel approach.Stroke 32: 2550–2553, 2001.PubMedCrossRefGoogle Scholar
  79. 79.
    Dewar D, Yam P, McCulloch J. Drug development for stroke: importance of protecting cerebral white matter.Eur J Pharmacol 375: 47–50, 1999.CrossRefGoogle Scholar
  80. 80.
    Hunter AJ, Mackay KB, Roger DC. To what extent have functional studies of ischemia in animals been useful in the assessment of potential neuroprotective agents?Trends Pharmacol Sci 19: 59–66, 1998.PubMedCrossRefGoogle Scholar
  81. 81.
    Duncan PW, Jorgensen HS, Wade DT. Outcome measures in acute stroke trials: a systematic review and some recommendations to improve practice.Stroke 31: 1429–1438, 2000.PubMedGoogle Scholar
  82. 82.
    Demchuk AM, Buchan AM. Predictors of stroke outcome.Neurol Clin 18: 455–473, 2001.CrossRefGoogle Scholar
  83. 83.
    Grotta JC. Acute stroke therapy at the millennium: consummating the marriage between the laboratory and bedside: the Feinberg lecture.Stroke 30: 1722–1728, 1999.PubMedGoogle Scholar
  84. 84.
    Zivin JA. Factors determining the therapeutic window for stroke.Neurology 50: 599–603, 1998.PubMedGoogle Scholar
  85. 85.
    Du C, Hu R, Csernansky CA, Hsu CY, Choi DW. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis?J Cereb Blood Flow Metab 16: 195–201, 1996.PubMedCrossRefGoogle Scholar
  86. 86.
    Jonas A, Aiyagari V, Vieira D, Figueroa M. The failure of neuronal protective agents versus the success of thromolysis for the treatment of ischemic stroke: the predictive value of animal models.Ann NY Acad Sci 939: 257–267, 2001.PubMedCrossRefGoogle Scholar
  87. 87.
    Dyker AG, Lees KR. Duration of neuroprotective treatment for ischemic stroke.Stroke 29: 535–542, 1998.PubMedGoogle Scholar
  88. 88.
    Malakoff D. Bayes offers a “new” way to make sense of numbers.Science 286: 1460–1464, 1999.PubMedCrossRefGoogle Scholar
  89. 89.
    Wilson LJT, Hareendran A, Grant M, Baird T, Schulz UG, Muir KW et al. Improving the assessment of outcomes in stroke: use of a structured interview to assign grades on the modified ranking scale.Stroke 33: 2243–2246, 2002.PubMedCrossRefGoogle Scholar
  90. 90.
    Tilley BC, Marler J, Geller NL, Lu M, Legler J, Brott T et al. Use of a global test for multiple outcomes in stroke trials with application to the National Institute of Neurological Disorders and Stroke t-PA Trial.Stroke 27: 2136–2142, 1996.PubMedGoogle Scholar
  91. 91.
    Zivin JA, Mazzarella V. Tissue plasminogen activator plus glutamate antagonist improves outcome after embolic stroke.Arch Neurol 48: 1235–1238, 1991.PubMedGoogle Scholar
  92. 92.
    Bowes MP, Rothlein R, Fagan SC, Zivin JA. Monoclonal antibodies preventing leukocyte activation reduce experimental neurologic injury and enhance efficacy of thrombolytic therapy.Neurology 45: 815–819, 1995.PubMedGoogle Scholar
  93. 93.
    Lyden PD, Lonzo L, Nunez S. Combination chemotherapy extends the therapeutic window to 60 minutes after stroke.J Neurotrauma 12: 223–230, 1995.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2004

Authors and Affiliations

  • Yu Dennis Cheng
    • 1
  • Lama Al-Khoury
    • 1
  • Justin A. Zivin
    • 1
    • 2
  1. 1.Stroke CenterUniversity of California School of Medicine, and University of California San DiegoLa Jolla
  2. 2.Department of NeurosciencesUniversity of California San DiegoLa Jolla

Personalised recommendations