NeuroRX

, Volume 1, Issue 1, pp 17–25

Neuronal death/survival signaling pathways in cerebral ischemia

  • Taku Sugawara
  • Miki Fujimura
  • Nobuo Noshita
  • Gyung Whan Kim
  • Atsushi Saito
  • Takeshi Hayashi
  • Purnima Narasimhan
  • Carolina M. Maier
  • Pak H. Chan
Article

Summary

Cumulative evidence suggests that apoptosis plays a pivotal role in cell deathin vitro after hypoxia. Apoptotic cell death pathways have also been implicated in ischemic cerebral injury inin vivo ischemia models. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides a substrate for numerous enzymatic oxidation reactions. Oxygen radicals damage cellular lipids, proteins and nucleic acids, and initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways may provide novel therapeutic strategies in clinical stroke.

Key Words

Cerebral ischemia apoptosis signaling pathway oxidative stress 

References

  1. 1.
    Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain.J Cereb Blood Flow Metab 21: 2–14, 2001.PubMedGoogle Scholar
  2. 2.
    Chan PH. Oxygen radicals in focal cerebral ischemia.Brain Pathol 4: 59–65, 1994.PubMedGoogle Scholar
  3. 3.
    Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury.J Neurotrauma 17: 871–890, 2000.PubMedGoogle Scholar
  4. 4.
    Sugawara T, Lewen A, Gasche Y, Yu F, Chan PH. Overexpression of SOD 1 protects vulnerable motor neurons after spinal cord injury by attenuating mitochondrial cytochrome c release.FASEB J 16: 1997–1999, 2002.PubMedGoogle Scholar
  5. 5.
    Liu R, Althaus JS, Ellerbrock BR, Becker DA, Gurney ME. Enhanced oxygen radical production in a transgenic mouse model of familial amyotrophic lateral sclerosis.Ann Neurol 44: 763–770, 1998.PubMedGoogle Scholar
  6. 6.
    White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW, Grossman LI et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury.J Neurol Sci 179: 1–33, 2000.PubMedGoogle Scholar
  7. 7.
    Fujimura M, Morita-Fujimura Y, Noshita N, Sugawara T, Kawase M, Chan PH. The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice.J Neurosci 20: 2817–2824, 2000.PubMedGoogle Scholar
  8. 8.
    Noshita N, Sugawara T, Hayashi T, Lewen A, Omar G, Chan PH. Copper/zinc superoxide dismutase attenuates neuronal cell death by preventing extracellular signal-regulated kinase activation after transient focal cerebral ischemia in mice.J Neurosci 22: 7923–7930, 2002.PubMedGoogle Scholar
  9. 9.
    Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH. Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia.J Neurosci 19: RC39: 1–6, 1999.Google Scholar
  10. 10.
    Sugawara T, Noshita N, Lewen A, Gasche Y, Ferrand-Drake M, Fujimura M et al. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation.J Neurosci 22: 209–217, 2002.PubMedGoogle Scholar
  11. 11.
    Saito A, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH. Over-expression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the Bad cell death signaling pathway.J Neurosci 23: 1710–1718, 2003.PubMedGoogle Scholar
  12. 12.
    Boyer PD, Chance B, Ernster L, Mitchell P, Racker E, Slater EC. Oxidative phosphorylation and photophosphorylation.Annu Rev Biochem 46: 955–1026, 1977.PubMedGoogle Scholar
  13. 13.
    Fujimura M, Morita-Fujimura Y, Murakami K, Kawase M, Chan PH. Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats.J Cereb Blood Flow Metab 18: 1239–1247, 1998.PubMedGoogle Scholar
  14. 14.
    Perez-Pinzon MA, Xu GP, Born J, Lorenzo J, Busto R, Rosenthal M et al. Cytochrome c is released from mitochondria into the cytosol after cerebral anoxia or ischemia.J Cereb Blood Flow Metab 19: 39–43, 1999.PubMedGoogle Scholar
  15. 15.
    Ankarcrona M. Glutamate induced cell death: apoptosis or necrosis?Prog Brain Res 116: 265–272, 1998.PubMedGoogle Scholar
  16. 16.
    Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures.Proc Natl Acad Sci USA 92: 7162–7166, 1995.PubMedGoogle Scholar
  17. 17.
    Green DR, Reed JC. Mitochondria and apoptosis.Science 281: 1309–1312, 1998.PubMedGoogle Scholar
  18. 18.
    Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9.Cell 94: 325–337, 1998.PubMedGoogle Scholar
  19. 19.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade.Cell 91: 479–489, 1997.PubMedGoogle Scholar
  20. 20.
    Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R et al. Apaf 1 is required for mitochondrial pathways of apoptosis and brain development.Cell 94: 739–750, 1998.PubMedGoogle Scholar
  21. 21.
    Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3.Cell 90: 405–413, 1997.PubMedGoogle Scholar
  22. 22.
    Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner.J Cell Biol 144: 281–292, 1999.PubMedGoogle Scholar
  23. 23.
    Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH et al. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia.J Neurosci 18: 4914–4928, 1998.PubMedGoogle Scholar
  24. 24.
    Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia.J Neurosci 18: 3659–3668, 1998.PubMedGoogle Scholar
  25. 25.
    Kang SJ, Wang S, Hara H, Peterson EP, Namura S, Amin-Hanjani S et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions.J Cell Biol 149: 613–622, 2000.PubMedGoogle Scholar
  26. 26.
    Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA. Ischemic brain injury is mediated by the activation of poly(ADP-ribose) polymerase.J Cereb Blood Flow Metab 17: 1143–1151, 1997.PubMedGoogle Scholar
  27. 27.
    Eliasson MJ, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH et al. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage.J Neurosci 19: 5910–5918, 1999.PubMedGoogle Scholar
  28. 28.
    Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis.Genes Dev 13: 239–252, 1999.PubMedGoogle Scholar
  29. 29.
    Miller LK. An exegesis of IAPs: salvation and surprises from BIR motifs.Trends Cell Biol 9: 323–328, 1999.PubMedGoogle Scholar
  30. 30.
    Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO.Nature 406: 855–862, 2000.PubMedGoogle Scholar
  31. 31.
    Yuan J, Yankner BA. Apoptosis in the nervous system.Nature 407: 802–809, 2000.PubMedGoogle Scholar
  32. 32.
    Shi Y. A structural view of mitochondria-mediated apoptosis.Nat Struct Biol 8: 394–401, 2001.PubMedGoogle Scholar
  33. 33.
    Merry DE, Korsmeyer SJ. Bcl-2 gene family in the nervous system.Annu Rev Neurosci 20: 245–267, 1997.PubMedGoogle Scholar
  34. 34.
    Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia.Neuron 13: 1017–1030, 1994.PubMedGoogle Scholar
  35. 35.
    Plesnila N, Zinkel S, Le DA, Amin-Hanjani S, Wu Y, Qiu J et al. BID mediates neuronal cell death after oxygen/glucose deprivation and focal cerebral ischemia.Proc Natl Acad Sci USA 98: 15318–15323, 2001.PubMedGoogle Scholar
  36. 36.
    Hata R, Gillardon F, Michaelidis TM, Hossmann KA. Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury.Metab Brain Dis 14: 117–124, 1999.PubMedGoogle Scholar
  37. 37.
    Hengartner MO. The biochemistry of apoptosis.Nature 407: 770–776, 2000.PubMedGoogle Scholar
  38. 38.
    Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis.Cell 94: 491–501, 1998PubMedGoogle Scholar
  39. 39.
    Rosenbaum DM, Gupta G, D’ Amore J, Singh M, Weidenheim K, Zhang H et al. Fas (CD95/APO-1) plays a role in the pathophysiology of focal cerebral ischemia.J Neurosci Res 61: 686–692, 2000.PubMedGoogle Scholar
  40. 40.
    Jin K, Graham SH, Mao X, Nagayama T, Simon RP, Greenberg DA. Fas (CD95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia.J Cereb Blood Flow Metab 21: 1411–1421, 2001.PubMedGoogle Scholar
  41. 41.
    Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors.Nat Med 2: 788–794, 1996.PubMedGoogle Scholar
  42. 42.
    Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death.Cell 80: 285–291, 1995.PubMedGoogle Scholar
  43. 43.
    Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL.Cell 87: 619–628, 1996.PubMedGoogle Scholar
  44. 44.
    Gonzalez-Zulueta M, Feldman AB, Klesse LJ, Kalb RG, Dillman JF, Parada LF et al. Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning.Proc Natl Acad Sci USA 97: 436–441, 2000.PubMedGoogle Scholar
  45. 45.
    Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al. Regulation of cell death protease caspase-9 by phosphorylation.Science 282: 1318–1321, 1998.PubMedGoogle Scholar
  46. 46.
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor.Cell 96: 857–868, 1999.PubMedGoogle Scholar
  47. 47.
    Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine.J Biol Chem 270: 7420–7426, 1995.PubMedGoogle Scholar
  48. 48.
    Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD et al. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF.Cell 65: 663–675, 1991.PubMedGoogle Scholar
  49. 49.
    Avruch J, Zhang XF, Kyriakis JM. Raf meets Ras: completing the framework of a signal transduction pathway.Trends Biochem Sci 19: 279–283, 1994.PubMedGoogle Scholar
  50. 50.
    Frodin M, Gammeltoft S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction.Mol Cell Endocrinol 151: 65–77, 1999.PubMedGoogle Scholar
  51. 51.
    Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che XM, Culmsee C et al. Transforming growth factor-β1 increases Bad phosphorylation and protects neurons against damage.J Neurosci 22: 3898–3909, 2002.PubMedGoogle Scholar
  52. 52.
    Lizcano JM, Morrice N, Cohen P. Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155.Biochem J 349: 547–557, 2000.PubMedGoogle Scholar
  53. 53.
    Kimura S, Uchiyama S, Takahashi HE, Shibuki K. cAMP-dependent long-term potentiation of nitric oxide release from cerebellar parallel fibers in rats.J Neurosci 18: 8551–8558, 1998.PubMedGoogle Scholar
  54. 54.
    Kontos HA, George E. Brown Memorial Lecture: oxygen radicals in cerebral vascular injury.Circ Res 57: 508–516, 1985.PubMedGoogle Scholar
  55. 55.
    Siesjo BK, Agardh CD, Bengtsson F. Free radicals and brain damage.Cerebrovasc Brain Metab Rev 1: 165–211, 1989.PubMedGoogle Scholar
  56. 56.
    Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide.General properties and effect of hyperbaric oxygen. Biochem J 134: 707–716, 1973.Google Scholar
  57. 57.
    Marklund SL. Human copper-containing superoxide dismutase of high molecular weight.Proc Natl Acad Sci USA 79: 7634–7638, 1982.PubMedGoogle Scholar
  58. 58.
    Chan PH, Kinouchi H, Epstein CJ, Carlson E, Chen SF, Imaizumi S et al. Role of superoxide dismutase in ischemic brain injury: reduction of edema and infarction in transgenic mice following focal cerebral ischemia.Prog Brain Res 96: 97–104, 1993.PubMedGoogle Scholar
  59. 59.
    He YY, Hsu CY, Ezrin AM, Miller MS. Polyethylene glycol-conjugated superoxide dismutase in focal cerebral ischemia-reperfusion.Am J Physiol (Lond) 265: H252-H256, 1993.Google Scholar
  60. 60.
    Chan PH, Longar S, Fishman RA. Protective effects of liposome-entrapped superoxide dismutase on posttraumatic brain edema.Ann Neurol 21: 540–547, 1987.PubMedGoogle Scholar
  61. 61.
    Imaizumi S, Woolworth V, Fishman RA, Chan PH. Liposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats.Stroke 21: 1312–1317, 1990.PubMedGoogle Scholar
  62. 62.
    Chan PH, Epstein CJ, Kinouchi H, Kamii H, Imaizumi S, Yang G et al. SOD-1 transgenic mice as a model for studies of neuroprotection in stroke and brain trauma.Ann NY Acad Sci 738: 93–103, 1994.PubMedGoogle Scholar
  63. 63.
    Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, Chan PH. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase.Proc Natl Acad Sci USA 88: 11158–11162, 1991.PubMedGoogle Scholar
  64. 64.
    Chan PH, Kawase M, Murakami K, Chen SF, Li Y, Calagui B et al. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion.J Neurosci 18: 8292–8299, 1998.PubMedGoogle Scholar
  65. 65.
    Murakami K, Kondo T, Epstein CJ, Chan PH. Overexpression of CuZn-superoxide dismutase reduces hippocampal injury after global ischemia in transgenic mice.Stroke 28: 1797–1804, 1997.PubMedGoogle Scholar
  66. 66.
    Kawase M, Murakami K, Fujimura M, Morita-Fujimura Y, Gasche Y, Kondo T et al. Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency.Stroke 30: 1962–1968, 1999.PubMedGoogle Scholar
  67. 67.
    Kondo T, Reaume AG, Huang T-T, Carlson E, Murakami K, Chen SF et al. Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia.J Neurosci 17: 4180–4189, 1997.PubMedGoogle Scholar
  68. 68.
    Kondo T, Reaume AG, Huang T-T, Murakami K, Carlson E, Chen S et al. Edema formation exacerbates neurological and histological outcomes after focal cerebral ischemia in CuZn-superoxide dismutase gene knockout mutant mice.Acta Neurochir Suppl 70: 62–64, 1997.PubMedGoogle Scholar
  69. 69.
    Murakami K, Kondo T, Kawase M, Li Y, Sato S, Chen SF et al. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency.J Neurosci 18: 205–213, 1998.PubMedGoogle Scholar
  70. 70.
    Fujimura M, Morita-Fujimura Y, Kawase M, Copin J-C, Calagui B, Epstein CJ et al. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome c and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice.J Neurosci 19: 3414–3422, 1999.PubMedGoogle Scholar
  71. 71.
    Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction.J Neurosci 18: 687–697, 1998.PubMedGoogle Scholar
  72. 72.
    Sheng H, Bart RD, Oury TD, Pearlstein RD, Crapo JD, Warner DS. Mice overexpressing extracellular superoxide dismutase have increased resistance to focal cerebral ischemia.Neuroscience 88: 185–191, 1999.PubMedGoogle Scholar
  73. 73.
    Sheng H, Brady TC, Pearlstein RD, Crapo JD, Warner DS. Extracellular superoxide dismutase deficiency worsens outcome from focal cerebral ischemia in the mouse.Neurosci Lett 267: 13–16, 1999.PubMedGoogle Scholar
  74. 74.
    Sheng H, Kudo M, Mackensen GB, Pearlstein RD, Crapo JD, Warner DS. Mice overexpressing extracellular superoxide dismutase have increased resistance to global cerebral ischemia.Exp Neurol 163: 392–398, 2000.PubMedGoogle Scholar
  75. 75.
    de Haan JB, Bladier C, Griffiths P, Kelner M, O’Shea RD, Cheung NS et al. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide.J Biol Chem 273: 22528–22536, 1998.PubMedGoogle Scholar
  76. 76.
    Weisbrot-Lefkowitz M, Reuhl K, Perry B, Chan PH, Inouye M, Mirochnitchenko O. Overexpression of human glutathione peroxidase protects transgenic mice against focal cerebral ischemia/ reperfusion damage.Mol Brain Res 53: 333–338, 1998.PubMedGoogle Scholar
  77. 77.
    Crack PJ, Taylor JM, Flentjar NJ, de Haan J, Hertzog P, Iannello RC et al. Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury.J Neurochem 78: 1389–1399, 2001.PubMedGoogle Scholar
  78. 78.
    Crack PJ, Taylor JM, de Haan JB, Kola I, Hertzog P, Iannello RC. Glutathione peroxidase-1 contributes to the neuroprotection seen in the superoxide dismutase-1 transgenic mouse in response to ischemia/reperfusion injury.J Cereb Blood Flow Metab 23: 19–22, 2003.PubMedGoogle Scholar
  79. 79.
    Kitagawa K, Matsumoto M, Tsujimoto Y, Ohtsuki T, Kuwabara K, Matsushita K et al. Amelioration of hippocampal neuronal damage after global ischemia by neuronal overexpression of BCL-2 in transgenic mice.Stroke 29: 2616–2621, 1998.PubMedGoogle Scholar
  80. 80.
    Wiessner C, Allegrini PR, Rupalla K, Sauer D, Oltersdorf T, McGregor AL et al. Neuron-specific transgene expression of Bcl-XL but not Bcl-2 genes reduced lesion size after permanent middle cerebral artery occlusion in mice.Neurosci Lett 268: 119–122, 1999.PubMedGoogle Scholar
  81. 81.
    de Bilbao F, Guarin E, Nef P, Vallet P, Giannakopoulos P, Dubois-Dauphin M. Cell death is prevented in thalamic fields but not in injured neocortical areas after permanent focal ischaemia in mice overexpressing the anti-apoptotic protein Bcl-2.Eur J Neurosci 12: 921–934, 2000.PubMedGoogle Scholar
  82. 82.
    Hara H, Fink K, Endres M, Friedlander RM, Gagliardini V, Yuan J et al. Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein.J Cereb Blood Flow Metab 17: 370–375, 1997.PubMedGoogle Scholar
  83. 83.
    Friedlander RM, Gagliardini V, Hara H, Fink KB, Li W, Mac-Donald G et al. Expression of a dominant negative mutant of interleukin-1 beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury.J Exp Med 185: 933–940, 1997.PubMedGoogle Scholar
  84. 84.
    Schielke GP, Yang GY, Shivers BD, Betz AL. Reduced ischemic brain injury in interleukin-1 β converting enzyme-deficient mice.J Cereb Blood Flow Metab 18: 180–185, 1998.PubMedGoogle Scholar
  85. 85.
    Liu XH, Kwon D, Schielke GP, Yang GY, Silverstein FS, Barks JD. Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage.J Cereb Blood Flow Metab 19: 1099–1108, 1999.PubMedGoogle Scholar
  86. 86.
    Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia.Nat Med 3: 1089–1095, 1997.PubMedGoogle Scholar
  87. 87.
    Goto S, Xue R, Sugo N, Sawada M, Blizzard KK, Poitras MF et al. Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery.Stroke 33: 1101–1106, 2002.PubMedGoogle Scholar
  88. 88.
    Gary DS, Bruce-Keller AJ, Kindy MS, Mattson MP. Ischemic and excitotoxic brain injury is enhanced in mice lacking the p55 tumor necrosis factor receptor.J Cereb Blood Flow Metab 18: 1283–1287, 1998.PubMedGoogle Scholar
  89. 89.
    Crumrine RC, Thomas AL, Morgan PF. Attenuation of p53 expression protects against focal ischemic damage in transgenic mice.J Cereb Blood Flow Metab 14: 887–891, 1994.PubMedGoogle Scholar
  90. 90.
    Chan PH, Kamii H, Yang G, Gafni J, Epstein CJ, Carlson E et al. Brain infarction is not reduced in SOD-1 transgenic mice after a permanent focal cerebral ischemia.Neuroreport 5: 293–296, 1993.PubMedGoogle Scholar
  91. 91.
    Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P et al. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia.Stroke 25: 165–170, 1994.PubMedGoogle Scholar
  92. 92.
    Kamii H, Kinouchi H, Sharp FR, Koistinaho J, Epstein CJ, Chan PH. Prolonged expression of hsp70 mRNA following transient focal cerebral ischemia in transgenic mice overexpressing CuZn-superoxide dismutase.J Cereb Blood Flow Metab 14: 478–486, 1994.PubMedGoogle Scholar
  93. 93.
    Kamii H, Kinouchi H, Sharp FR, Epstein CJ, Sagar SM, Chan PH. Expression of c-fos mRNA after a mild focal cerebral ischemia in SOD-1 transgenic mice.Brain Res 662: 240–244, 1994.PubMedGoogle Scholar
  94. 94.
    Kondo T, Murakami K, Honkaniemi J, Sharp FR, Epstein CJ, Chan PH. Expression of hsp70 mRNA is induced in the brain of transgenic mice overexpressing human CuZn-superoxide dismutase following transient global cerebral ischemia.Brain Res 737: 321–326, 1996.PubMedGoogle Scholar
  95. 95.
    Kamii H, Mikawa S, Murakami K, Kinouchi H, Yoshimoto T, Reola L et al. Effects of nitric oxide synthase inhibition on brain infarction in SOD-1-transgenic mice following transient focal cerebral ischemia.J Cereb Blood Flow Metab 16: 1153–1157, 1996.PubMedGoogle Scholar
  96. 96.
    Ditelberg JS, Sheldon RA, Epstein CJ, Ferriero DM. Brain injury after perinatal hypoxia-ischemia is exacerbated in copper/zinc superoxide dismutase transgenic mice.Pediatr Res 39: 204–208, 1996.PubMedGoogle Scholar
  97. 97.
    Fullerton HJ, Ditelberg JS, Chen SF, Sarco DP, Chan PH, Epstein CJ et al. Copper/zinc superoxide dismutase transgenic brain accumulates hydrogen peroxide after perinatal hypoxia ischemia.Ann Neurol 44: 357–364, 1998.PubMedGoogle Scholar
  98. 98.
    Fujimura M, Morita-Fujimura Y, Narasimhan P, Copin J-C, Kawase M, Chan PH. Copper-zinc superoxide dismutase prevents the early decrease of apurinic/apyrimidinic endonuclease and subsequent DNA fragmentation after transient focal cerebral ischemia in mice.Stroke 30: 2408–2415, 1999.PubMedGoogle Scholar
  99. 99.
    Huang C-Y, Fujimura M, Noshita N, Chang Y-Y, Chan PH. SOD1 down-regulates NF-κB and c-myc expression in mice after transient focal cerebral ischemia.J Cereb Blood Flow Metab 21: 163–173, 2001.PubMedGoogle Scholar
  100. 100.
    Huang C-Y, Fujimura M, Chang Y-Y, Chan PH. Overexpression of copper-zinc superoxide dismutase attenuates acute activation of activator protein-1 after transient focal cerebral ischemia in mice.Stroke 32: 741–747, 2001.PubMedGoogle Scholar
  101. 101.
    Fujimura M, Morita-Fujimura Y, Copin J-C, Yoshimoto T, Chan PH. Reduction of copper, zinc-superoxide dismutase in knockout mice does not affect edema or infarction volumes and the early release of mitochondrial cytochrome c after permanent focal cerebral ischemia.Brain Res 889: 208–213, 2001.PubMedGoogle Scholar
  102. 102.
    Noshita N, Sugawara T, Fujimura M, Morita-Fujimura Y, Chan PH. Manganese superoxide dismutase affects cytochrome c release and caspase-9 activation after transient focal cerebral ischemia in mice.J Cereb Blood Flow Metab 21: 557–567, 2001.PubMedGoogle Scholar
  103. 103.
    Kim GW, Kondo T, Noshita N, Chan PH. Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals.Stroke 33: 809–815, 2002.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2004

Authors and Affiliations

  • Taku Sugawara
    • 1
    • 2
  • Miki Fujimura
    • 1
    • 2
  • Nobuo Noshita
    • 1
    • 2
  • Gyung Whan Kim
    • 1
    • 2
  • Atsushi Saito
    • 1
    • 2
  • Takeshi Hayashi
    • 1
    • 2
  • Purnima Narasimhan
    • 1
    • 2
  • Carolina M. Maier
    • 1
    • 2
  • Pak H. Chan
    • 1
    • 2
    • 3
  1. 1.Department of NeurosurgeryStanford University School of MedicineStanford
  2. 2.Department of Neurology and Neurological Sciences, and Program in NeurosciencesStanford University School of MedicineStanford
  3. 3.Neurosurgical LaboratoriesStanford UniversityStanford

Personalised recommendations