Skip to main content

Advertisement

Log in

Efficiency enhancement of photovoltaic solar system by integrating multi-pipe copper frame filled with ZnO-doped phase change material

  • Original research
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

The increase of module temperature during operation adversely affect the power conversion efficiency (PCE) of a photovoltaic (PV) solar system. In an attempt to improve the PCE of the PV solar system, multi-pipe copper cooling frames integrated with phase change material (PCM) and ZnO-doped PCM have been developed and examined. Monocrystalline silicon modules (50 W each), solar meter, temperature sensor, digital anemometer and multi-meter are employed to conduct the tests. The I–V curves are plotted for the PV systems tested. The outcomes unveiled that the module temperature and electrical efficiency of conventional PV system at noon were 52.8 °C and 12.29% respectively. Integrating PCM/ZnO with PV system has reduced 5.68% of the module temperature and increased the 5.04% of electrical efficiency. The multi-pipe copper cooling frame filled with ZnO-doped PCM shows better cooling performance owing to the role of natural convection and conduction heat transfer inside the frame.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The authors will make data available upon reasonable request.

References

  1. N.A.S. Elminshawy, A.M.I. Mohamed, K. Morad, Y. Elhenawy, A.A. Alrobaian, Performance of PV panel coupled with geothermal air cooling system subjected to hot climatic. Appl. Therm. Eng. 148, 1–9 (2019)

    Article  Google Scholar 

  2. M.H. Shahverdian, A. Sohani, H. Sayyaadi, S. Samiezadeh, M.H. Doranehgard, N. Karimi, L.K.B. Li, A dynamic multi-objective optimization procedure for water cooling of a photovoltaic module. Sustain. Energy Technol. Assess. 45, 101111 (2021). https://doi.org/10.1016/j.seta.2021.101111

    Article  Google Scholar 

  3. S. Sargunanathan, A. Elango, S.T. Mohideen, Performance enhancement of solar photovoltaic cells using effective cooling methods: a review. Renew. Sustain. Energy Rev. 64, 382–393 (2016)

    Article  CAS  Google Scholar 

  4. H.M.S. Bahaidarah, A.A.B. Baloch, P. Gandhidasan, Uniform cooling of photo- voltaic panels: a review. Renew. Sustain. Energy Rev. 57, 1520–1544 (2016)

    Article  Google Scholar 

  5. A. Makki, S. Omer, H. Sabir, Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew. Sustain. Energy Rev. 41, 658–684 (2015)

    Article  CAS  Google Scholar 

  6. A. Shukla, K. Kant, A. Sharma, P.H. Biwole, Cooling methodologies of photovoltaic module for enhancing electrical efficiency: a review. Solar Energy Mater. Solar Cells 160, 275–286 (2017)

    Article  CAS  Google Scholar 

  7. F. Al-Amri, T.S. Maatallah, O.F. Al-Amri, S. Ali, S. Ali, I.S. Ateeq, R. Zachariah, T.S. Kayed, Innovative technique for achieving uniform temperatures across solar panels using heat pipes and liquid immersion cooling in the harsh climate in the Kingdom of Saudi Arabia. Alexandria Eng. J. 61, 1413–1424 (2022). https://doi.org/10.1016/j.aej.2021.06.046

    Article  Google Scholar 

  8. S. Rubaiee, M.A. Fazal, Influence of various solar radiations on the efficiency of a photovoltaic solar system integrated with a passive cooling technique. Energies 15, 9584 (2022)

    Article  CAS  Google Scholar 

  9. M. Sardarabadi, M. Passandideh-Fard, M.J. Maghrebi, M. Ghazikhani, Experimental study of using both ZnO/water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Sol. Energy Mater. Sol. Cells 161, 62–69 (2017)

    Article  CAS  Google Scholar 

  10. T.R. Shah, H.M. Ali, Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review. Sol. Energy 183, 173–203 (2019)

    Article  CAS  Google Scholar 

  11. S. Philipps, W. Warmuth, Photovoltaics report—Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE Projects GmbH, 21 https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html. Accessed 21 Feb 2023

  12. S.M. Sultan, C.P. Tso, M.N. Ervina Efzan, A new approach for photovoltaic module cooling technique evaluation and comparison using the temperature dependent photovoltaic power ratio. Sustain. Energy Technol. Assess. 39, 100705 (2020)

    Google Scholar 

  13. Y. Gao, D. Wu, Z. Dai, C. Wang, B. Chen, X. Zhang, Performance analysis of a hybrid photovoltaic-thermoelectric generator system using heat pipe as heat sink for synergistic production of electricity. Energy Convers. Manag. 249, 114830 (2021). https://doi.org/10.1016/j.enconman.2021.114830

    Article  Google Scholar 

  14. EGE PV News, Ecco green energy, temperature coefficient of solar PV module. https://www.eco-greenenergy.com/temperature-coefficient-of-solar-pv-module/. Accessed 5 Feb 2023

  15. M.C. Browne, B. Norton, S.J. McCormack, Phase change materials for photovoltaic thermal management. Renew. Sustain. Energy Rev 47, 762–782 (2015). https://doi.org/10.1016/j.rser.2015.03.050

    Article  CAS  Google Scholar 

  16. A. Waqas, J. Jia, L. Xua, M. Alib, J. Alvi, Thermal and electrical management of photovoltaic panels using phase change materials—a review. Renew. Sustain. Energy Rev. 92, 254–271 (2018)

    Article  Google Scholar 

  17. A. Hasan, J. Sarwar, H. Alnoman, S. Abdelbaqi, Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Sol. Energy 146, 417–429 (2017)

    Article  Google Scholar 

  18. J. Park, T. Kim, S.B. Leigh, Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Sol. Energy 105, 561–574 (2014). https://doi.org/10.1016/j.solener.2014.04.020

    Article  Google Scholar 

  19. E. Japs, G. Sonnenrein, S. Krauter, J. Vrabec, Experimental study of phase change materials for photovoltaic modules: energy performance and economic yield for the EPEX spot market. Sol. Energy 140, 51–59 (2016)

    Article  CAS  Google Scholar 

  20. Z.A. Qureshi, H.M. Ali, S. Khushnood, Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int. J. Heat Mass Transf. 127, 838–856 (2018)

    Article  CAS  Google Scholar 

  21. J. Wang, H. Xie, Z. Guo, L. Guan, Y. Li, Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Appl. Therm. Eng. 73, 1541–1547 (2014)

    Article  CAS  Google Scholar 

  22. A. Babapoor, G. Karimi, Thermal properties measurement and heat storage analysis of paraffin nanoparticles composites phase change material: comparison and optimization. Appl. Therm. Eng. 90, 945–951 (2015)

    Article  CAS  Google Scholar 

  23. T.O. Kaddoura, M.A.M. Ramli, Y.A. Al-Turki, On the estimation of the optimum tilt angle of PV panel in Saudi Arabia. Renew. Sustain. Energy Rev. 65, 626–634 (2016)

    Article  Google Scholar 

  24. A. Johnson, How do you calculate the tolerance? https://scienceoxygen.com/how-do-you-calculate-the-tolerance/. Accessed 31 Aug 2022

  25. R. Pichandi, K. Kalidasa Murugavel, A. Karthick, Performance enhancement of photovoltaic module by integrating eutectic inorganic phase change material. Energy Sources Part A (2020). https://doi.org/10.1080/15567036.2020.1817185

    Article  Google Scholar 

  26. A. Waqas A, J. Ji, A. Bahadar, L. Xu, Zeshan, M. Modjinou, Thermal management of conventional photovoltaic module using phase change materials and experimental investigation. Energy Explor. Exploit. 37(5):1516–1540 (2019). https://doi.org/10.1177/0144598718795697

  27. S.A. Nada, D.H. El-Nagar, H.M. Hussein, Improving the thermal regulation and efficiency enhancement of PCM-integrated PV modules using nano particles. Energy Convers. Manag. 166, 735–743 (2018)

    Article  CAS  Google Scholar 

  28. M. Sharaf, A.S. Huzayyin, M.S. Yousef, Performance enhancement of photovoltaic cells using phase change material (PCM) in winter. Alexandria Eng. J. 61, 4229–4239 (2022)

    Article  Google Scholar 

  29. A. Karthick, P. Ramanan, A. Ghosh, B. Stalin, R. Vignesh Kumar, I. Baranilingesan, Performance enhancement of copper indium diselenide photovoltaic module using inorganic phase change material. Asia-Pac. J. Chem. Eng. 15, e2480 (2020)

    Article  CAS  Google Scholar 

  30. A. Kazemian, M. Hosseinzadeh, M. Sardarabadi, M. Passandideh-Fard, Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints. Energy 162, 210–23 (2018). https://doi.org/10.1016/j.energy.2018.07.069

    Article  CAS  Google Scholar 

  31. S. Senthilraja, R. Gangadevi, R. Marimuthu, M. Baskaran, Performance evaluation of water and air based PVT solar collector for hydrogen production application. Int. J. Hydrog. Energy 45, 7498–7507 (2020)

    Article  CAS  Google Scholar 

  32. P. Atkin, M.M. Farid, Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Sol. Energy 44, 217–228 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deanship of Scientific Research (DSR), University of Jeddah, Jeddah, under Grant No. (UJ-20-008-DR). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Fazal.

Ethics declarations

Conflict of interest

The author declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubaiee, S., Fazal, M.A. Efficiency enhancement of photovoltaic solar system by integrating multi-pipe copper frame filled with ZnO-doped phase change material. MRS Energy & Sustainability 10, 181–188 (2023). https://doi.org/10.1557/s43581-023-00063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43581-023-00063-1

Keywords

Navigation