Skip to main content

Advertisement

Log in

Ti4O7 as conductive additive in sulfur and graphene-sulfur cathodes for high-performance Lithium-sulfur batteries with a facile preparation method

  • Original research
  • Sustainable Energy and Environmental Materials
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Lithium-sulfur batteries have significant potential to be applied in next-generation energy storage systems. However, polysulfide dissolution and redeposition have contributed to poor cycling stability, low sulfur utilization, and poor rate performance, thereby limiting their practical applications. Herein, we used a sol-gel method to fabricate a Ti4O7 conductive metal oxide, which was partially added to a Lithium-sulfur battery cathode. The results demonstrated that the addition of 7.5 wt% to 10 wt% Ti4O7 as the conductive additive resulted in a better rate capability and reversible cycling performance owing to its high electronic conductivity and surface adsorption of polysulfides. Compared to complex architectures and complicated synthesis methods, we report a more effective way to overcome the drawbacks of Lithium-sulfur batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Nat. Mater. 11, 19–29 (2012)

    Article  CAS  Google Scholar 

  2. R. Van Noorden, Nature 507, 26–28 (2014)

    Article  Google Scholar 

  3. J.-M. Tarascon, M. Armand, Nature 414, 359–367 (2001)

    Article  CAS  Google Scholar 

  4. M.-K. Song, E.J. Cairns, Y. Zhang, Nanoscale 5, 2186–2204 (2013)

    Article  CAS  Google Scholar 

  5. Z.W. Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.-C. Hsu, Y. Cui, Nat. Commun. 4, 1331 (2013)

    Article  Google Scholar 

  6. Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Angew. Chem. Int. Ed. 52, 13186–13200 (2013)

    Article  CAS  Google Scholar 

  7. S.S. Zhang, J. Power Sour. 231, 153–162 (2013)

    Article  CAS  Google Scholar 

  8. C. Zhang, H.B. Wu, C. Yuan, Z. Guo, X.W.D. Lou, Angew. Chem. 124, 9730–9733 (2012)

    Article  Google Scholar 

  9. X. Ji, S. Evers, R. Black, L.F. Nazar, Nat. Commun. 2, 325 (2011)

    Article  Google Scholar 

  10. B. Zhang, X. Qin, G. Li, X. Gao, Energy Environ. Sci. 3, 1531–1537 (2010)

    Article  CAS  Google Scholar 

  11. J.-J. Chen, Q. Zhang, Y.-N. Shi, L.-L. Qin, Y. Cao, M.-S. Zheng, Q.-F. Dong, Phys. Chem. Chem. Phys. 14, 5376–5382 (2012)

    Article  CAS  Google Scholar 

  12. C. Wang, H. Chen, W. Dong, J. Ge, W. Lu, X. Wu, L. Guo, L. Chen, Chem. Commun. 50, 1202–1204 (2014)

    Article  CAS  Google Scholar 

  13. L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E.J. Cairns, Y. Zhang, J. Am. Chem. Soc. 133, 18522–18525 (2011)

    Article  CAS  Google Scholar 

  14. G. Zhou, S. Pei, L. Li, D.W. Wang, S. Wang, K. Huang, L.C. Yin, F. Li, H.M. Cheng, Adv. Mater. 26, 625–631 (2014)

    Article  CAS  Google Scholar 

  15. H. Chen, C. Wang, W. Dong, W. Lu, Z. Du, L. Chen, Nano Lett. 15, 798–802 (2014)

    Article  Google Scholar 

  16. H. Chen, C. Wang, Y. Dai, S. Qiu, J. Yang, W. Lu, L. Chen, Nano Lett. 15, 5443–5448 (2015)

    Article  CAS  Google Scholar 

  17. W. Li, G. Zheng, Y. Yang, Z.W. Seh, N. Liu, Y. Cui, Proc. Natl. Acad. Sci. 110, 7148–7153 (2013)

    Article  CAS  Google Scholar 

  18. S. Evers, T. Yim, L.F. Nazar, J. Phys. Chem. C 116, 19653–19658 (2012)

    Article  CAS  Google Scholar 

  19. P. Wei, M.Q. Fan, H.C. Chen, D. Chen, C. Li, K.Y. Shu, C.J. Lv, Int. J. Hydrogen Energy 41, 1819–1827 (2016)

    Article  CAS  Google Scholar 

  20. W.L. Wu, C.Y. Wan, C.X. Wu, L.H. Guan, RSC Adv. 5, 80353–80356 (2015)

    Article  CAS  Google Scholar 

  21. Q. Xu, G.C. Hu, H.L. Bi, H.F. Xiang, Ionics 21, 981–986 (2015)

    Article  CAS  Google Scholar 

  22. F.G. Sun, J.T. Wang, D.H. Long, W.M. Qiao, L.C. Ling, C.X. Lv, R. Cai, J. Mater. Chem. A 1, 13283–13289 (2013)

    Article  CAS  Google Scholar 

  23. Y.G. Zhang, Z. Bakenov, Y. Zhao, A. Konarov, T.N.L. Doan, K.E.K. Sun, A. Yermukhambetova, P. Chen, Powder Technol. 235, 248–255 (2013)

    Article  CAS  Google Scholar 

  24. H. Tang, S.S. Yao, M.X. Jing, X. Wu, J.L. Hou, X.Y. Qian, D.W. Rao, X.Q. Shen, X.M. Xi, K.S. Xiao, J. Alloys Compds. 650, 351–356 (2015)

    Article  CAS  Google Scholar 

  25. C.Y. Wan, W.L. Wu, C.X. Wu, J.X. Xu, L.H. Guan, RSC Adv. 5, 5102–5106 (2015)

    Article  CAS  Google Scholar 

  26. X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, Nat. Commun. (2015). https://doi.org/10.1038/ncomms6682

    Article  Google Scholar 

  27. Z. Li, J. Zhang, X.W.D. Lou, Angew. Chem. Int. Ed. 54, 12886–12890 (2015)

    Article  CAS  Google Scholar 

  28. R. Ponraj, A.G. Kannan, J.H. Ahn, D.-W. Kim, ACS Appl. Mater. Interfaces 8, 4000–4006 (2016)

    Article  CAS  Google Scholar 

  29. X. Tao, J. Wang, C. Liu, H. Wang, H. Yao, G. Zheng, Z.W. Seh, Q. Cai, W. Li, G. Zhou, Nat. Commun. 7, 1–9 (2016)

    Google Scholar 

  30. X. Tao, J. Wang, Z. Ying, Q. Cai, G. Zheng, Y. Gan, H. Huang, Y. Xia, C. Liang, W. Zhang, Nano Lett. 14, 5288–5294 (2014)

    Article  CAS  Google Scholar 

  31. Q. Pang, D. Kundu, M. Cuisinier, L. Nazar, Nat. Commun. 5, 1–8 (2014)

    Google Scholar 

  32. S. Mei, C.J. Jafta, I. Lauermann, Q. Ran, M. Kärgell, M. Ballauff, Y. Lu, Adv. Func. Mater. 27, 1701176 (2017)

    Article  Google Scholar 

  33. H. Wu, X. Hu, G. Chen, in ECS Meeting Abstracts, MA2018-01, pp. 305–305 (2018)

  34. M. Liu, S. Jhulki, Z. Sun, A. Magasinski, C. Hendrix, G. Yushin, Nano Energy 79, 105428 (2021)

    Article  CAS  Google Scholar 

  35. F. Wang, X. Ding, R. Shi, M. Li, Y. Lei, Z. Lei, G. Jiang, F. Xu, H. Wang, L. Jia, R. Jiang, Z. Liu, J. Sun, J. Mater. Chem. A 7, 10494–10504 (2019)

    Article  CAS  Google Scholar 

  36. L. Ma, L.-J. Yu, J. Liu, Y.-Q. Su, S. Li, X. Zang, T. Meng, S. Zhang, J. Song, J. Wang, X. Zhao, Z. Cui, N. Wang, Y. Zhao, Energy Storage Mater. 44, 180–189 (2022)

    Article  Google Scholar 

  37. J. Wang, Y. Wu, Z. Shi, C. Wu, Electrochim. Acta 144, 307–314 (2014)

    Article  CAS  Google Scholar 

  38. S.-S. Huang, Y.-H. Lin, W. Chuang, P.-S. Shao, C.-H. Chuang, J.-F. Lee, M.-L. Lu, Y.-T. Weng, N.-L. Wu, ACS Sustain. Chem. Eng. 6, 3162–3168 (2018)

    Article  CAS  Google Scholar 

  39. Z. Deng, Z. Zhang, Y. Lai, J. Liu, J. Li, Y. Liu, J. Electrochem. Soc. 160, A553–A558 (2013)

    Article  CAS  Google Scholar 

  40. M. Li, J. Zhou, J. Zhou, C. Guo, Y. Han, Y. Zhu, G. Wang, Y. Qian, Mater. Res. Bull. 96, 509–515 (2017)

    Article  CAS  Google Scholar 

  41. H. Shi, Y. Dong, F. Zhou, J. Chen, Z.-S. Wu, J. Phys. Energy 1, 015002 (2018)

    Article  Google Scholar 

  42. Y. Liu, X. Qin, S. Zhang, G. Liang, F. Kang, G. Chen, B. Li, ACS Appl. Mater. Interfaces 10, 26264–26273 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science and Technology Council (NSTC) in Taiwan under grant No. MOST111-2221-E007-091. The XRD instrument were provided by the Instrumentation Center at National Tsing Hua University (NTHU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cho-Jen Tsai.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, CW., Tsai, CJ. Ti4O7 as conductive additive in sulfur and graphene-sulfur cathodes for high-performance Lithium-sulfur batteries with a facile preparation method. MRS Energy & Sustainability 9, 369–377 (2022). https://doi.org/10.1557/s43581-022-00052-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43581-022-00052-w

Keywords

Navigation