Skip to main content

Nickel sulfide film by potentiodynamic deposition as competent electrode for supercapacitor

Abstract

  • Nanostructures of transition metal sulfides can be important electrodes to achieve high performance supercapacitors.

  • Creation of binder-less electrodes of these materials is a challenge.

  • The present potentiodynamic electrodeposition technique helps to achieve these objectives and the studied supercapacitors exhibit a good performance.

The potentiodynamic method is used to efficiently install binder-free stable film of nickel sulfide (Ni3S2) on a copper electrode at ambient conditions in neutral pH to explore its symmetric supercapacitor capabilities. The method yields nano-sized particles tightly bonded into 3D-porous structures. This alleviates large internal surface areas, mechanical stability, short ion diffusion length, and better ion-conducting pathways, which are essential properties of electrodes for a better supercapacitor. The supercapacitor was constituted with 2 M KOH electrolyte which shows a high specific capacity of 168.4 Cg−1 at 2.5 Ag−1 (758 Fg−1 at 2.5 Ag−1) and good stability up to 3000 charge–discharge cycles, high rate capability, and high energy and power density. Therefore, these hybrid electrodes can be promising materials for electrochemical energy storage systems.

Graphical abstract

Discussion

Development of supercapacitor with high energy content, low cost, and environmental friendly is a great challenge. Microscopic electrochemical understanding of electrode and electrolytic interaction and the possible mechanisms of charge storage are critically important parameters to develop robust energy storage systems.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Data availability

The authors confirm that all the data are available in the main article and its supporting materials.

References

  1. Y. Liu, G. Zhou, K. Liu, Y. Cui, Design of complex nanomaterials for energy storage: past success and future opportunity. Acc. Chem. Res. 50, 2895–2905 (2017). https://doi.org/10.1021/acs.accounts.7b00450

    CAS  Article  Google Scholar 

  2. M.I.A. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M. Abd Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, A.H. Al-Muhtaseb, A.S. Awed, A.H. Ashour, D.W. Rooney, Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environ. Chem. Lett. 19(1), 375–439 (2021). https://doi.org/10.1007/s10311-020-01075-w

    CAS  Article  Google Scholar 

  3. T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696–2767 (2018). https://doi.org/10.1039/c8ee01419a

    Article  Google Scholar 

  4. Y. Shi, G. Yu, Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem. Mater. 28, 2466–2477 (2016). https://doi.org/10.1021/acs.chemmater.5b04879

    CAS  Article  Google Scholar 

  5. Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252

    CAS  Article  Google Scholar 

  6. X. Li, J. Wang, Y. Zhao, F. Ge, S. Komarneni, Z. Cai, Wearable solid-state supercapacitors operating at high working voltage with a flexible nanocomposite electrode. ACS Appl. Mater. Interfaces. 8, 25905–25914 (2016). https://doi.org/10.1021/acsami.6b06156

    CAS  Article  Google Scholar 

  7. J. Cherusseri, N. Choudhary, K. Sambath Kumar, Y. Jung, J. Thomas, Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horizons 4, 840–858 (2019). https://doi.org/10.1039/c9nh00152b

    CAS  Article  Google Scholar 

  8. A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 48, 1272–1341 (2019). https://doi.org/10.1039/c8cs00581h

    CAS  Article  Google Scholar 

  9. C. Mevada, M. Mukhopadhyay, Limitations and recent advances in high mass loading asymmetric supercapacitors based on pseudocapacitive materials. Ind. Eng. Chem. Res. (2021). https://doi.org/10.1021/acs.iecr.0c04811

    Article  Google Scholar 

  10. D. Mohapatra, S. Badrayyana, S. Parida, Designing binder-free, flexible electrodes for high-performance supercapacitors based on pristine carbon nano-onions and their composite with CuO nanoparticles. RSC Adv. 6, 14720–14729 (2016). https://doi.org/10.1039/c5ra23700a

    CAS  Article  Google Scholar 

  11. D. Liu, Z. Jiao Liu, X. Li, W. Xie, Q. Wang, Q. Liu, Y. Fu, D. He, Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries. Small 13, 1–27 (2017). https://doi.org/10.1002/smll.201702000

    CAS  Article  Google Scholar 

  12. E. Kim, N. Kang, J.J. Moon, M. Choi, A comparative study of potentiodynamic and potentiostatic modes in the deposition of polyaniline. Bull. Korean Chem. Soc. 37, 1445–1452 (2016). https://doi.org/10.1002/bkcs.10887

    CAS  Article  Google Scholar 

  13. M. Kigozi, R. Kali, A. Bello, B. Padya, G.M. Kalu-Uka, J. Wasswa, P.K. Jain, P.A. Onwualu, N.Y. Dzade, Modified activation process for supercapacitor electrode materials from African maize cob. Materials (Basel) 13, 1–20 (2020). https://doi.org/10.3390/ma13235412

    CAS  Article  Google Scholar 

  14. S. Sahoo, C.S. Rout, Facile electrochemical synthesis of porous manganese–cobalt–sulfide based ternary transition metal sulfide nanosheets architectures for high performance energy storage applications. Electrochim. Acta. 220, 57–66 (2016). https://doi.org/10.1016/j.electacta.2016.10.043

    CAS  Article  Google Scholar 

  15. N.K. Al-Shara, F. Sher, A. Yaqoob, G.Z. Chen, Electrochemical investigation of novel reference electrode Ni/Ni(OH)2 in comparison with silver and platinum inert quasi-reference electrodes for electrolysis in eutectic molten hydroxide. Int. J. Hydrogen Energy 44, 27224–27236 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.248

    CAS  Article  Google Scholar 

  16. Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes—a review. J. Mater. 2, 37–54 (2016). https://doi.org/10.1016/j.jmat.2016.01.001

    Article  Google Scholar 

  17. W. Lu, M. Yang, X. Jiang, Y. Yu, X. Liu, Y. Xing, Template-assisted synthesis of hierarchically hollow C/NiCo2S4 nanospheres electrode for high performance supercapacitors. Chem. Eng. J. 382, 122943 (2020). https://doi.org/10.1016/j.cej.2019.122943

    CAS  Article  Google Scholar 

  18. S. Shaikh, M.K. Rabinal, Rapid ambient growth of copper sulfide microstructures: binder free electrodes for supercapacitor. J. Energy Storage 28, 101288 (2020). https://doi.org/10.1016/j.est.2020.101288

    Article  Google Scholar 

  19. S.P. Mundinamani, M.K. Rabinal, Molecular modification of highly degenerate semiconductor as an active electrode to enhance the performance of supercapacitors. Mater. Res. Express 1, 45508 (2014). https://doi.org/10.1088/2053-1591/1/4/045508

    CAS  Article  Google Scholar 

  20. I. Gurrappa, L. Binder, Electrodeposition of nanostructured coatings and their characterization—a review. Sci. Technol. Adv. Mater. (2008). https://doi.org/10.1088/1468-6996/9/4/043001

    Article  Google Scholar 

  21. Y. Kim, J. Jung, S. Kim, W.S. Chae, Cyclic voltammetric and chronoamperometric deposition of CdS. Mater. Trans. 54, 1467–1472 (2013). https://doi.org/10.2320/matertrans.M2013125

    CAS  Article  Google Scholar 

  22. H. Heydari, M.B. Gholivand, A. Abdolmaleki, Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: an ultra-sensitive hydrazine sensor. Mater. Sci. Eng. C 66, 16–24 (2016). https://doi.org/10.1016/j.msec.2016.04.040

    CAS  Article  Google Scholar 

  23. K.R. Prasad, N. Miura, Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. J. Power Sources 135, 354–360 (2004). https://doi.org/10.1016/j.jpowsour.2004.04.005

    CAS  Article  Google Scholar 

  24. E.M. Marlett, Electrochemical synthesis of organometallics. Ann. N. Y. Acad. Sci. 125, 12–24 (1965). https://doi.org/10.1111/j.1749-6632.1965.tb45375.x

    CAS  Article  Google Scholar 

  25. D. Lu, Y. Zhang, S. Lin, L. Wang, C. Wang, Synthesis of PtAu bimetallic nanoparticles on graphene–carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor. Talanta 112, 111–116 (2013). https://doi.org/10.1016/j.talanta.2013.03.010

    CAS  Article  Google Scholar 

  26. H. Wang, M. Liang, D. Duan, W. Shi, Y. Song, Z. Sun, Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem. Eng. J. 350, 523–533 (2018). https://doi.org/10.1016/j.cej.2018.05.004

    CAS  Article  Google Scholar 

  27. Y. Zhou, N. Li, L. Sun, X. Yu, C. Liu, L. Yang, S. Zhang, Z. Wang, Multi-layer-stacked Co9S8 micro/nanostructure directly anchoring on carbon cloth as a flexible electrode in supercapacitors. Nanoscale 11, 7457–7464 (2019). https://doi.org/10.1039/c9nr00828d

    CAS  Article  Google Scholar 

  28. Z. Li, J. Han, L. Fan, R. Guo, Template-free synthesis of Ni7S6 hollow spheres with mesoporous shells for high performance supercapacitors. CrystEngComm 17, 1952–1958 (2015). https://doi.org/10.1039/c4ce02548b

    CAS  Article  Google Scholar 

  29. H. Huang, X. Deng, L. Yan, G. Wei, W. Zhou, X. Liang, J. Guo, One-step synthesis of self-supported Ni3S2/NiS composite film on Ni foam by electrodeposition for high-performance supercapacitors. Nanomaterials 9, 1–11 (2019). https://doi.org/10.3390/nano9121718

    CAS  Article  Google Scholar 

  30. Q. Hu, W. Li, B. Xiang, X. Zou, J. Hao, M. Deng, Q. Wu, Y. Wang, Sulfur source-inspired synthesis of β-NiS with high specific capacity and tunable morphologies for hybrid supercapacitor. Electrochim. Acta. 337, 135826 (2020). https://doi.org/10.1016/j.electacta.2020.135826

    CAS  Article  Google Scholar 

  31. Y. Tan, W.D. Xue, Y. Zhang, D.X. He, W.J. Wang, R. Zhao, Solvothermal synthesis of hierarchical α-NiS particles as battery-type electrode materials for hybrid supercapacitors. J. Alloys Compd. 806, 1068–1076 (2019). https://doi.org/10.1016/j.jallcom.2019.07.222

    CAS  Article  Google Scholar 

  32. F.S. Freitas, A.S. Gonçalves, A. De Morais, J.E. Benedetti, A.F. Nogueira, Graphene-like MoS2 as a low-cost counter electrode material for dye-sensitized solar cells. J. NanoGe J. Energy Sustain. (2012). https://doi.org/10.1039/c0xx00000x

    Article  Google Scholar 

  33. A. Sarma, A.C. Dippel, O. Gutowski, M. Etter, M. Lippmann, O. Seeck, G. Manna, M.K. Sanyal, T.F. Keller, S. Kulkarni, P. Guha, P.V. Satyam, M.V. Zimmermann, Electrodeposition of nanowires of a high copper content thiourea precursor of copper sulfide. RSC Adv. 9, 31900–31910 (2019). https://doi.org/10.1039/c9ra04293h

    CAS  Article  Google Scholar 

  34. A. Gallegos Melgar, S.A. Serna, I. Lazaro, E.J. Gutierrez-Castañeda, V.H. Mercado Lemus, H. Arcos Gutierrez, M. Hernandez Hernandez, J. Porcayo Calderon, Potentiodynamic polarization performance of a novel composite coating system of Al2O3/chitosan-sodium alginate, applied on an aluminum AA6063 alloy for protection in a chloride Ions environment. Coatings 10, 1–17 (2020)

    Google Scholar 

  35. X. Liu, X. Qi, Z. Zhang, L. Ren, Y. Liu, L. Meng, K. Huang, J. Zhong, One-step electrochemical deposition of nickel sulfide/graphene and its use for supercapacitors. Ceram. Int. 40, 8189–8193 (2014). https://doi.org/10.1016/j.ceramint.2014.01.015

    CAS  Article  Google Scholar 

  36. H.J. Kim, S.M. Suh, S.S. Rao, D. Punnoose, C.V. Tulasivarma, C.V.V.M. Gopi, N. Kundakarla, S. Ravi, I.K. Durga, Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells. J. Electroanal. Chem. 777, 123–132 (2016). https://doi.org/10.1016/j.jelechem.2016.07.037

    CAS  Article  Google Scholar 

  37. A. Ghahremaninezhad, E. Asselin, D.G. Dixon, Electrodeposition and growth mechanism of copper sulfide nanowires. J. Phys. Chem. C. 115, 9320–9334 (2011). https://doi.org/10.1021/jp108283z

    CAS  Article  Google Scholar 

  38. S.P. Mundinamani, M.K. Rabinal, Molecular modification of highly degenerate semiconductor as an active electrode to enhance the performance of supercapacitors. Mater. Res. Express. 1, 45508 (2015). https://doi.org/10.1088/2053-1591/1/4/045508

    CAS  Article  Google Scholar 

  39. C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J. Power Sources 226, 65–70 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.064

    CAS  Article  Google Scholar 

  40. S. Nagamuthu, K.-S. Ryu, synthesis of Ag/Nio honeycomb structured nanoarrays as the electrode material for high performance asymmetric supercapacitor devices. Sci. Rep. 9, 4864 (2019)

    Article  Google Scholar 

  41. W. Zuo, W. Zhu, D. Zhao, Y. Sun, Y. Li, J. Liu, X.W.D. Lou, Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Environ. Sci. 9, 2881–2891 (2016)

    CAS  Google Scholar 

  42. L. Li, X. Zhang, Z. Zhang, M. Zhang, L. Cong, Y. Pan, S. Lin, A bismuth oxide nanosheet-coated electrospun carbon nanofiber film: a free-standing negative electrode for flexible asymmetric supercapacitors. J. Mater. Chem. A 4, 16635–16644 (2016)

    CAS  Article  Google Scholar 

  43. E. Kamali-Heidari, Z.L. Xu, M.H. Sohi, A. Ataie, J.K. Kim, Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochim. Acta 271, 507–518 (2018). https://doi.org/10.1016/j.electacta.2018.03.183

    CAS  Article  Google Scholar 

  44. N.S. Muthu, M. Gopalan, Mesoporous nickel sulphide nanostructures for enhanced supercapacitor performance. Appl. Surf. Sci. 480, 186–198 (2019). https://doi.org/10.1016/j.apsusc.2019.02.250

    CAS  Article  Google Scholar 

  45. C. Xiong, B. Li, H. Liu, W. Zhao, C. Duan, Wu. Haiwei, Y. Ni, Smart porous wood supported flower-like NiS/Ni conjuction with vitrimer, co-effect as multifunctional material with reshaping, shape-memory and selfhealing for high-performance supercapacitors, catalysts and sensors. J. Mater. Chem. A 8, 10898–10908 (2020). https://doi.org/10.1039/D0TA03664A

    CAS  Article  Google Scholar 

  46. A.M. Patil, A.C. Lokhande, N.R. Chodankar, V.S. Kumbhar, C.D. Lokhande, Engineered morphologies of β-NiS thin films via anionic exchange process and their supercapacitive performance. Mater. Des. 97, 407–416 (2016). https://doi.org/10.1016/j.matdes.2016.02.114

    CAS  Article  Google Scholar 

  47. N. Parveen, S.A. Ansari, S.G. Ansari, H. Fouad, N.M. Abd El-Salam, M.H. Cho, Solid-state symmetrical supercapacitor based on hierarchical flower-like nickel sulfide with shape-controlled morphological evolution. Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2018.01.100

    Article  Google Scholar 

  48. S. Nandhini, A. Juliet Christina Mary, G. Muralidharan, Facile microwave-hydrothermal synthesis of NiS nanostructures for supercapacitor applications. Appl. Surf. Sci. 449, 485–491 (2018). https://doi.org/10.1016/j.apsusc.2018.01.024

    CAS  Article  Google Scholar 

  49. A.M. Patil, A.C. Lokhande, P.A. Shinde, J.H. Kim, C.D. Lokhande, Vertically aligned NiS nano-flakes derived from hydrothermally prepared Ni(OH)2 for high performance supercapacitor. J. Energy Chem. 27(3), 791–800 (2018). https://doi.org/10.1016/j.jechem.2017.05.005

    Article  Google Scholar 

  50. A.M. Patil, V.C. Lokhande, A.C. Lokhandec, N.R. Chodankar, T. Ji, J.H. Kim, C.D. Lokhand, Ultrathin nickel sulfide nano-flames as an electrode for high performance supercapacitor; comparison of symmetric FSS-SCs and electrochemical SCs device. RSC Adv. 6, 68388–68401 (2016). https://doi.org/10.1039/C6RA12018K

    CAS  Article  Google Scholar 

  51. V.V. Uchaikin, R.T. Sibatov, A.S. Ambrozevich, On impedance spectroscopy of supercapacitors. Russ. Phys. J. 59, 1–11 (2016). https://doi.org/10.1007/s11182-016-0844-2

    Article  Google Scholar 

Download references

Acknowledgments

The author Ms. Sajeeda Shaikh is grateful to the Govt. of Karnataka, India, for DMFMS fellowship (Ref No. DOM/FELLOWSHIP/CR-40/2018-19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Rabinal.

Ethics declarations

Conflict of interest

The authors have no competing interest to declare.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaikh, S., Rabinal, M.K. Nickel sulfide film by potentiodynamic deposition as competent electrode for supercapacitor. MRS Energy & Sustainability (2022). https://doi.org/10.1557/s43581-022-00040-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43581-022-00040-0

Keywords

  • electrodeposition
  • catalytic
  • energy storage
  • nanostructure