N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. U.S.A. 103, 15729 (2006)
CAS
Article
Google Scholar
C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, E28 (2010)
CAS
Article
Google Scholar
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)
CAS
Article
Google Scholar
Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2, 30 (2019)
Article
Google Scholar
V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014)
CAS
Article
Google Scholar
D. Majumdar, T. Maiyalagan, Z. Jiang, Recent progress in ruthenium oxide-based composites for supercapacitor applications. ChemElectroChem 6, 4343 (2019)
CAS
Article
Google Scholar
W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697 (2011)
CAS
Article
Google Scholar
X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, 3206 (2012)
CAS
Article
Google Scholar
G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1 (2011)
CAS
Article
Google Scholar
R.R. Salunkhe, S.-H. Hsu, K.C.W. Wu, Y. Yamauchi, Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. Chemsuschem 7, 1551 (2014)
CAS
Article
Google Scholar
W. Tang, L. Liu, S. Tian, L. Li, Y. Yue, Y. Wu, K. Zhu, Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Chem. Commun. 47, 10058 (2011)
CAS
Article
Google Scholar
L. Huang, B. Yao, J. Sun, X. Gao, J. Wu, J. Wan, T. Li, Z. Hu, J. Zhou, Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode. J. Mater. Chem. A 5, 2897 (2017)
Article
CAS
Google Scholar
S. Pal, K. Kumar-Chattopadhyay, Fabrication of molybdenum trioxide nanobelts as high performance supercapacitor. Mater. Today Proc. 5, 9776 (2018)
CAS
Article
Google Scholar
J.-H. Li, Y.-C. Chen, Y.-S. Wang, W.H. Ho, Y.-J. Gu, C.-H. Chuang, Y.-D. Song, C.-W. Kung, Electrochemical evolution of pore-confined metallic molybdenum in a metal-organic framework (MOF) for all-MOF-based pseudocapacitors. ACS Appl. Energy Mater. 3, 6258 (2020)
CAS
Article
Google Scholar
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013)
Google Scholar
H.-C.J. Zhou, S. Kitagawa, Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415 (2014)
CAS
Article
Google Scholar
G. Ferey, Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191 (2008)
CAS
Article
Google Scholar
I.M. Hönicke, I. Senkovska, V. Bon, I.A. Baburin, N. Bönisch, S. Raschke, J.D. Evans, S. Kaskel, Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angew. Chem. Int. Ed. 57, 13780 (2018)
Article
CAS
Google Scholar
M.B. Majewski, A.W. Peters, M.R. Wasielewski, J.T. Hupp, O.K. Farha, Metal–organic frameworks as platform materials for solar fuels catalysis. ACS Energy Lett. 3, 598 (2018)
CAS
Article
Google Scholar
C. Pettinari, A. Tombesi, Metal–organic frameworks for carbon dioxide capture. MRS Energy Sustain. 7, E35 (2020)
Article
Google Scholar
C. Pettinari, A. Tombesi, Metal–organic frameworks for chemical conversion of carbon dioxide. MRS Energy Sustain. 7, 31 (2020)
Article
Google Scholar
A. Morozan, F. Jaouen, Metal organic frameworks for electrochemical applications. Energy Environ. Sci. 5, 9269 (2012)
CAS
Article
Google Scholar
Z. Zhou, S. Mukherjee, S. Hou, W. Li, M. Elsner, R.A. Fischer, Porphyrinic MOF film for multifaceted electrochemical sensing. Angew. Chem. Int. Ed. 60, 20551 (2021)
CAS
Article
Google Scholar
S.M. Cohen, Postsynthetic methods for the functionalization of metal–organic frameworks. Chem. Rev. 112, 970 (2012)
CAS
Article
Google Scholar
S. Jeoung, S. Kim, M. Kim, H.R. Moon, Pore engineering of metal–organic frameworks with coordinating functionalities. Coord. Chem. Rev. 420, 213377 (2020)
CAS
Article
Google Scholar
B. Ding, M.B. Solomon, C.F. Leong, D.M. D’Alessandro, Redox-active ligands: recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coord. Chem. Rev. 439, 213891 (2021)
CAS
Article
Google Scholar
K.M. Choi, H.M. Jeong, J.H. Park, Y.-B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8, 7451 (2014)
CAS
Article
Google Scholar
D. Sheberla, J.C. Bachman, J.S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220 (2016)
Article
CAS
Google Scholar
X. Xu, J. Tang, H. Qian, S. Hou, Y. Bando, M.S.A. Hossain, L. Pan, Y. Yamauchi, Three-dimensional networked metal–organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl. Mater. Interfaces 9, 38737 (2017)
CAS
Article
Google Scholar
Y.S. Wang, Y.C. Chen, J.H. Li, C.W. Kung, Toward metal–organic-framework-based supercapacitors: room-temperature synthesis of electrically conducting MOF-based nanocomposites decorated with redox-active manganese. Eur. J. Inorg. Chem. 2019, 3036 (2019)
CAS
Article
Google Scholar
A. Mallick, H. Liang, O. Shekhah, J. Jia, G. Mouchaham, A. Shkurenko, Y. Belmabkhout, H.N. Alshareef, M. Eddaoudi, Made-to-order porous electrodes for supercapacitors: MOFs embedded with redox-active centers as a case study. Chem. Commun. 56, 1883 (2020)
CAS
Article
Google Scholar
A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016)
CAS
Article
Google Scholar
S. Pal, S.-S. Yu, C.-W. Kung, Group 4 Metal-Based Metal—Organic Frameworks for Chemical Sensors. Chemosensors 9, 306 (2021)
CAS
Article
Google Scholar
S. Yuan, J.-S. Qin, C.T. Lollar, H.-C. Zhou, Stable metal–organic frameworks with group 4 metals: current status and trends. ACS Cent. Sci. 4, 440 (2018)
CAS
Article
Google Scholar
L.S. Xie, G. Skorupskii, M. Dincă, Electrically conductive metal-organic frameworks. Chem. Rev. 120, 8536 (2020)
CAS
Article
Google Scholar
I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf, R. Ameloot, An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185 (2017)
CAS
Article
Google Scholar
S. Lin, P.M. Usov, A.J. Morris, The role of redox hopping in metal–organic framework electrocatalysis. Chem. Commun. 54, 6965 (2018)
CAS
Article
Google Scholar
B.A. Johnson, A. Bhunia, H. Fei, S.M. Cohen, S. Ott, Development of a UiO-type thin film electrocatalysis platform with redox-active linkers. J. Am. Chem. Soc. 140, 2985 (2018)
CAS
Article
Google Scholar
K. Maindan, X. Li, J. Yu, P. Deria, Controlling charge-transport in metal-organic frameworks: contribution of topological and spin-state variation on the iron-porphyrin centered redox hopping rate. J. Phys. Chem. B 123, 8814 (2019)
CAS
Article
Google Scholar
C.-W. Kung, S. Goswami, I. Hod, T.C. Wang, J. Duan, O.K. Farha, J.T. Hupp, Charge transport in zirconium-based metal–organic frameworks. Acc. Chem. Res. 53, 1187 (2020)
CAS
Article
Google Scholar
I. Liberman, R. Shimoni, R. Ifraemov, I. Rozenberg, C. Singh, I. Hod, Active-site modulation in an Fe-porphyrin-based metal-organic framework through ligand axial coordination: accelerating electrocatalysis and charge-transport kinetics. J. Am. Chem. Soc. 142, 1933 (2020)
CAS
Article
Google Scholar
L. Shao, Q. Wang, Z. Ma, Z. Ji, X. Wang, D. Song, Y. Liu, N. Wang, A high-capacitance flexible solid-state supercapacitor based on polyaniline and metal-organic framework (UiO-66) composites. J. Power Sources 379, 350 (2018)
CAS
Article
Google Scholar
J. Shanahan, D.S. Kissel, E. Sullivan, PANI@UiO-66 and PANI@UiO-66-NH2 polymer–MOF hybrid composites as tunable semiconducting materials. ACS Omega 5, 6395 (2020)
CAS
Article
Google Scholar
C. Li, C. Hu, Y. Zhao, L. Song, J. Zhang, R. Huang, L. Qu, Decoration of graphene network with metal–organic frameworks for enhanced electrochemical capacitive behavior. Carbon 78, 231 (2014)
CAS
Article
Google Scholar
D. Micheroni, G. Lan, W. Lin, Efficient electrocatalytic proton reduction with carbon nanotube-supported metal–organic frameworks. J. Am. Chem. Soc. 140, 15591 (2018)
CAS
Article
Google Scholar
Y. Pu, W. Wu, J. Liu, T. Liu, F. Ding, J. Zhang, Z. Tang, A defective MOF architecture threaded by interlaced carbon nanotubes for high-cycling lithium–sulfur batteries. RSC Adv. 8, 18604 (2018)
CAS
Article
Google Scholar
H.A. Schulze, B. Hoppe, M. Schäfer, D.P. Warwas, P. Behrens, Electrically Conducting nanocomposites of carbon nanotubes and metal–organic frameworks with strong interactions between the two components. ChemNanoMat 5, 1159 (2019)
CAS
Article
Google Scholar
M.H. Hassan, R.R. Haikal, T. Hashem, J. Rinck, F. Koeniger, P. Thissen, H. Stefan, C. Wöll, M.H. Alkordi, Electrically conductive, monolithic metal-organic framework–graphene (MOF@G) composite coatings. ACS Appl. Mater. Interfaces 11, 6442 (2019)
CAS
Article
Google Scholar
C.-H. Shen, C.-H. Chuang, Y.-J. Gu, W.H. Ho, Y.-D. Song, Y.-C. Chen, Y.-C. Wang, C.-W. Kung, Cerium-based metal–organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance. ACS Appl. Mater. Interfaces 13, 16418 (2021)
CAS
Article
Google Scholar
H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369 (2014)
CAS
Article
Google Scholar
C.-H. Shen, Y.-H. Chen, Y.-C. Wang, T.-E. Chang, Y.-L. Chen, C.-W. Kung, Probing the electronic and ionic transports in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes. Phys. Chem. Chem. Phys. 24, 9855 (2022)
CAS
Article
Google Scholar
H. Noh, Y. Cui, A.W. Peters, D.R. Pahls, M.A. Ortuño, N.A. Vermeulen, C.J. Cramer, L. Gagliardi, J.T. Hupp, O.K. Farha, An exceptionally stable metal–organic framework supported molybdenum(VI) oxide catalyst for cyclohexene epoxidation. J. Am. Chem. Soc. 138, 14720 (2016)
CAS
Article
Google Scholar
W.H. Ho, S.-C. Li, Y.-C. Wang, T.-E. Chang, Y.-T. Chiang, Y.-P. Li, C.-W. Kung, Proton-conductive cerium-based metal–organic frameworks. ACS Appl. Mater. Interfaces 13, 55358 (2021)
CAS
Article
Google Scholar
J.E. Mondloch, M.J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J.T. Hupp, O.K. Farha: Are Zr6-based MOFs water stable Linker hydrolysis vs. capillary-force-driven channel collapse. Chem. Commun. 50, 8944 (2014)
B. Villoria-del-Álamo, S. Rojas-Buzo, P. García-García, A. Corma, Zr-MOF-808 as catalyst for amide esterification. Chem. Eur. J. 27, 4588 (2021)
Article
CAS
Google Scholar
Y. Han, M. Liu, K. Li, Y. Zuo, Y. Wei, S. Xu, G. Zhang, C. Song, Z. Zhang, X. Guo, Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm 17, 6434 (2015)
CAS
Article
Google Scholar
M. Lammert, H. Reinsch, C.A. Murray, M.T. Wharmby, H. Terraschke, N. Stock, Synthesis and structure of Zr(IV)- and Ce(IV)-based CAU-24 with 1,2,4,5-tetrakis(4-carboxyphenyl)benzene. Dalton Trans. 45, 18822 (2016)
CAS
Article
Google Scholar
S.A. Ntim, O. Sae-Khow, F.A. Witzmann, S. Mitra, Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions. J. Colloid Interfaces Sci. 355, 383 (2011)
Article
CAS
Google Scholar
S. Lin, Y. Pineda-Galvan, W.A. Maza, C.C. Epley, J. Zhu, M.C. Kessinger, Y. Pushkar, A.J. Morris, Electrochemical water oxidation by a catalyst-modified metal–organic framework thin film. Chemsuschem 10, 514 (2017)
CAS
Article
Google Scholar
R. Shimoni, W. He, I. Liberman, I. Hod, Tuning of redox conductivity and electrocatalytic activity in metal–organic framework films via control of defect site density. J. Phys. Chem. C 123, 5531 (2019)
CAS
Article
Google Scholar
A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications (Wiley, New York, 2001)
Google Scholar