Skip to main content

Molybdenum-functionalized metal–organic framework crystals interconnected by carbon nanotubes as negative electrodes for supercapacitors

Abstract

As the pseudocapacitive material operated in the negative potential window in an aqueous electrolyte, the molybdenum-functionalized MOF-808-CNT nanocomposite can obviously outperform both the molybdenum-functionalized MOF-808 and molybdenum-functionalized CNT.

Crystals of a water-stable Zr-based metal–organic framework (MOF), MOF-808, are directly grown on the surface of carboxylic acid-functionalized carbon nanotubes (CNT) to synthesize the nanocomposites with tunable MOF-to-CNT ratios. The crystallinity, morphology, porosity, and electrical conductivity of all nanocomposites are characterized. To install the electrochemically active sites within the highly porous MOF framework, the obtained MOF-808-CNT nanocomposites are further subjected to the functionalization of spatially dispersed Mo(VI) sites by a self-limiting process followed by the electrochemical reduction to generate the molybdenum nanoparticles confined within the MOF pore. Thin films of these Mo-functionalized materials are served as the pseudocapacitive materials in aqueous electrolytes and operated in a negative potential window. By utilizing the electrochemically active molybdenum confined within the highly porous MOF and the electronic conduction between MOF crystals facilitated by CNT, the optimal Mo-functionalized nanocomposite can significantly outperform both the Mo-functionalized MOF and Mo-functionalized CNT.

Discussion

  • MOFs are highly porous materials, which should be attractive candidates for electrochemical energy storage, but their poor chemical stability and low electrical conductivity hinder the practical use of MOFs in supercapacitors.

  • Even though several MOFs have been directly applied for supercapacitors in aqueous electrolytes, most of these reported MOFs are not stable in water (or the alkaline electrolytes tested), which would generate MOF-derived materials.

  • Reported examples of MOF-based materials for supercapacitors that are chemically robust in the tested electrolytes are relatively rare.

  • Pseudocapacitive materials show higher specific capacitances than the double-layer-type materials, but most pseudocapacitive materials can only be operated in the positive potential window. Thus, asymmetric supercapacitors are usually fabricated by serving the double-layer-type material as the negative electrode.

  • Molybdenum-based pseudocapacitive materials can be operated in the negative potential window, which makes it feasible to design the supercapacitors based on all pseudocapacitive materials.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Data availability

The authors confirm that all the raw data supporting the findings of this work are available from the corresponding author on reasonable request.

References

  1. N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. U.S.A. 103, 15729 (2006)

    CAS  Article  Google Scholar 

  2. C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, E28 (2010)

    CAS  Article  Google Scholar 

  3. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)

    CAS  Article  Google Scholar 

  4. Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2, 30 (2019)

    Article  Google Scholar 

  5. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014)

    CAS  Article  Google Scholar 

  6. D. Majumdar, T. Maiyalagan, Z. Jiang, Recent progress in ruthenium oxide-based composites for supercapacitor applications. ChemElectroChem 6, 4343 (2019)

    CAS  Article  Google Scholar 

  7. W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697 (2011)

    CAS  Article  Google Scholar 

  8. X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, 3206 (2012)

    CAS  Article  Google Scholar 

  9. G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1 (2011)

    CAS  Article  Google Scholar 

  10. R.R. Salunkhe, S.-H. Hsu, K.C.W. Wu, Y. Yamauchi, Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. Chemsuschem 7, 1551 (2014)

    CAS  Article  Google Scholar 

  11. W. Tang, L. Liu, S. Tian, L. Li, Y. Yue, Y. Wu, K. Zhu, Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Chem. Commun. 47, 10058 (2011)

    CAS  Article  Google Scholar 

  12. L. Huang, B. Yao, J. Sun, X. Gao, J. Wu, J. Wan, T. Li, Z. Hu, J. Zhou, Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode. J. Mater. Chem. A 5, 2897 (2017)

    Article  CAS  Google Scholar 

  13. S. Pal, K. Kumar-Chattopadhyay, Fabrication of molybdenum trioxide nanobelts as high performance supercapacitor. Mater. Today Proc. 5, 9776 (2018)

    CAS  Article  Google Scholar 

  14. J.-H. Li, Y.-C. Chen, Y.-S. Wang, W.H. Ho, Y.-J. Gu, C.-H. Chuang, Y.-D. Song, C.-W. Kung, Electrochemical evolution of pore-confined metallic molybdenum in a metal-organic framework (MOF) for all-MOF-based pseudocapacitors. ACS Appl. Energy Mater. 3, 6258 (2020)

    CAS  Article  Google Scholar 

  15. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013)

    Google Scholar 

  16. H.-C.J. Zhou, S. Kitagawa, Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415 (2014)

    CAS  Article  Google Scholar 

  17. G. Ferey, Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191 (2008)

    CAS  Article  Google Scholar 

  18. I.M. Hönicke, I. Senkovska, V. Bon, I.A. Baburin, N. Bönisch, S. Raschke, J.D. Evans, S. Kaskel, Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angew. Chem. Int. Ed. 57, 13780 (2018)

    Article  CAS  Google Scholar 

  19. M.B. Majewski, A.W. Peters, M.R. Wasielewski, J.T. Hupp, O.K. Farha, Metal–organic frameworks as platform materials for solar fuels catalysis. ACS Energy Lett. 3, 598 (2018)

    CAS  Article  Google Scholar 

  20. C. Pettinari, A. Tombesi, Metal–organic frameworks for carbon dioxide capture. MRS Energy Sustain. 7, E35 (2020)

    Article  Google Scholar 

  21. C. Pettinari, A. Tombesi, Metal–organic frameworks for chemical conversion of carbon dioxide. MRS Energy Sustain. 7, 31 (2020)

    Article  Google Scholar 

  22. A. Morozan, F. Jaouen, Metal organic frameworks for electrochemical applications. Energy Environ. Sci. 5, 9269 (2012)

    CAS  Article  Google Scholar 

  23. Z. Zhou, S. Mukherjee, S. Hou, W. Li, M. Elsner, R.A. Fischer, Porphyrinic MOF film for multifaceted electrochemical sensing. Angew. Chem. Int. Ed. 60, 20551 (2021)

    CAS  Article  Google Scholar 

  24. S.M. Cohen, Postsynthetic methods for the functionalization of metal–organic frameworks. Chem. Rev. 112, 970 (2012)

    CAS  Article  Google Scholar 

  25. S. Jeoung, S. Kim, M. Kim, H.R. Moon, Pore engineering of metal–organic frameworks with coordinating functionalities. Coord. Chem. Rev. 420, 213377 (2020)

    CAS  Article  Google Scholar 

  26. B. Ding, M.B. Solomon, C.F. Leong, D.M. D’Alessandro, Redox-active ligands: recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coord. Chem. Rev. 439, 213891 (2021)

    CAS  Article  Google Scholar 

  27. K.M. Choi, H.M. Jeong, J.H. Park, Y.-B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8, 7451 (2014)

    CAS  Article  Google Scholar 

  28. D. Sheberla, J.C. Bachman, J.S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220 (2016)

    Article  CAS  Google Scholar 

  29. X. Xu, J. Tang, H. Qian, S. Hou, Y. Bando, M.S.A. Hossain, L. Pan, Y. Yamauchi, Three-dimensional networked metal–organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl. Mater. Interfaces 9, 38737 (2017)

    CAS  Article  Google Scholar 

  30. Y.S. Wang, Y.C. Chen, J.H. Li, C.W. Kung, Toward metal–organic-framework-based supercapacitors: room-temperature synthesis of electrically conducting MOF-based nanocomposites decorated with redox-active manganese. Eur. J. Inorg. Chem. 2019, 3036 (2019)

    CAS  Article  Google Scholar 

  31. A. Mallick, H. Liang, O. Shekhah, J. Jia, G. Mouchaham, A. Shkurenko, Y. Belmabkhout, H.N. Alshareef, M. Eddaoudi, Made-to-order porous electrodes for supercapacitors: MOFs embedded with redox-active centers as a case study. Chem. Commun. 56, 1883 (2020)

    CAS  Article  Google Scholar 

  32. A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016)

    CAS  Article  Google Scholar 

  33. S. Pal, S.-S. Yu, C.-W. Kung, Group 4 Metal-Based Metal—Organic Frameworks for Chemical Sensors. Chemosensors 9, 306 (2021)

    CAS  Article  Google Scholar 

  34. S. Yuan, J.-S. Qin, C.T. Lollar, H.-C. Zhou, Stable metal–organic frameworks with group 4 metals: current status and trends. ACS Cent. Sci. 4, 440 (2018)

    CAS  Article  Google Scholar 

  35. L.S. Xie, G. Skorupskii, M. Dincă, Electrically conductive metal-organic frameworks. Chem. Rev. 120, 8536 (2020)

    CAS  Article  Google Scholar 

  36. I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf, R. Ameloot, An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185 (2017)

    CAS  Article  Google Scholar 

  37. S. Lin, P.M. Usov, A.J. Morris, The role of redox hopping in metal–organic framework electrocatalysis. Chem. Commun. 54, 6965 (2018)

    CAS  Article  Google Scholar 

  38. B.A. Johnson, A. Bhunia, H. Fei, S.M. Cohen, S. Ott, Development of a UiO-type thin film electrocatalysis platform with redox-active linkers. J. Am. Chem. Soc. 140, 2985 (2018)

    CAS  Article  Google Scholar 

  39. K. Maindan, X. Li, J. Yu, P. Deria, Controlling charge-transport in metal-organic frameworks: contribution of topological and spin-state variation on the iron-porphyrin centered redox hopping rate. J. Phys. Chem. B 123, 8814 (2019)

    CAS  Article  Google Scholar 

  40. C.-W. Kung, S. Goswami, I. Hod, T.C. Wang, J. Duan, O.K. Farha, J.T. Hupp, Charge transport in zirconium-based metal–organic frameworks. Acc. Chem. Res. 53, 1187 (2020)

    CAS  Article  Google Scholar 

  41. I. Liberman, R. Shimoni, R. Ifraemov, I. Rozenberg, C. Singh, I. Hod, Active-site modulation in an Fe-porphyrin-based metal-organic framework through ligand axial coordination: accelerating electrocatalysis and charge-transport kinetics. J. Am. Chem. Soc. 142, 1933 (2020)

    CAS  Article  Google Scholar 

  42. L. Shao, Q. Wang, Z. Ma, Z. Ji, X. Wang, D. Song, Y. Liu, N. Wang, A high-capacitance flexible solid-state supercapacitor based on polyaniline and metal-organic framework (UiO-66) composites. J. Power Sources 379, 350 (2018)

    CAS  Article  Google Scholar 

  43. J. Shanahan, D.S. Kissel, E. Sullivan, PANI@UiO-66 and PANI@UiO-66-NH2 polymer–MOF hybrid composites as tunable semiconducting materials. ACS Omega 5, 6395 (2020)

    CAS  Article  Google Scholar 

  44. C. Li, C. Hu, Y. Zhao, L. Song, J. Zhang, R. Huang, L. Qu, Decoration of graphene network with metal–organic frameworks for enhanced electrochemical capacitive behavior. Carbon 78, 231 (2014)

    CAS  Article  Google Scholar 

  45. D. Micheroni, G. Lan, W. Lin, Efficient electrocatalytic proton reduction with carbon nanotube-supported metal–organic frameworks. J. Am. Chem. Soc. 140, 15591 (2018)

    CAS  Article  Google Scholar 

  46. Y. Pu, W. Wu, J. Liu, T. Liu, F. Ding, J. Zhang, Z. Tang, A defective MOF architecture threaded by interlaced carbon nanotubes for high-cycling lithium–sulfur batteries. RSC Adv. 8, 18604 (2018)

    CAS  Article  Google Scholar 

  47. H.A. Schulze, B. Hoppe, M. Schäfer, D.P. Warwas, P. Behrens, Electrically Conducting nanocomposites of carbon nanotubes and metal–organic frameworks with strong interactions between the two components. ChemNanoMat 5, 1159 (2019)

    CAS  Article  Google Scholar 

  48. M.H. Hassan, R.R. Haikal, T. Hashem, J. Rinck, F. Koeniger, P. Thissen, H. Stefan, C. Wöll, M.H. Alkordi, Electrically conductive, monolithic metal-organic framework–graphene (MOF@G) composite coatings. ACS Appl. Mater. Interfaces 11, 6442 (2019)

    CAS  Article  Google Scholar 

  49. C.-H. Shen, C.-H. Chuang, Y.-J. Gu, W.H. Ho, Y.-D. Song, Y.-C. Chen, Y.-C. Wang, C.-W. Kung, Cerium-based metal–organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance. ACS Appl. Mater. Interfaces 13, 16418 (2021)

    CAS  Article  Google Scholar 

  50. H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369 (2014)

    CAS  Article  Google Scholar 

  51. C.-H. Shen, Y.-H. Chen, Y.-C. Wang, T.-E. Chang, Y.-L. Chen, C.-W. Kung, Probing the electronic and ionic transports in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes. Phys. Chem. Chem. Phys. 24, 9855 (2022)

    CAS  Article  Google Scholar 

  52. H. Noh, Y. Cui, A.W. Peters, D.R. Pahls, M.A. Ortuño, N.A. Vermeulen, C.J. Cramer, L. Gagliardi, J.T. Hupp, O.K. Farha, An exceptionally stable metal–organic framework supported molybdenum(VI) oxide catalyst for cyclohexene epoxidation. J. Am. Chem. Soc. 138, 14720 (2016)

    CAS  Article  Google Scholar 

  53. W.H. Ho, S.-C. Li, Y.-C. Wang, T.-E. Chang, Y.-T. Chiang, Y.-P. Li, C.-W. Kung, Proton-conductive cerium-based metal–organic frameworks. ACS Appl. Mater. Interfaces 13, 55358 (2021)

    CAS  Article  Google Scholar 

  54. J.E. Mondloch, M.J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J.T. Hupp, O.K. Farha: Are Zr6-based MOFs water stable Linker hydrolysis vs. capillary-force-driven channel collapse. Chem. Commun. 50, 8944 (2014)

  55. B. Villoria-del-Álamo, S. Rojas-Buzo, P. García-García, A. Corma, Zr-MOF-808 as catalyst for amide esterification. Chem. Eur. J. 27, 4588 (2021)

    Article  CAS  Google Scholar 

  56. Y. Han, M. Liu, K. Li, Y. Zuo, Y. Wei, S. Xu, G. Zhang, C. Song, Z. Zhang, X. Guo, Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm 17, 6434 (2015)

    CAS  Article  Google Scholar 

  57. M. Lammert, H. Reinsch, C.A. Murray, M.T. Wharmby, H. Terraschke, N. Stock, Synthesis and structure of Zr(IV)- and Ce(IV)-based CAU-24 with 1,2,4,5-tetrakis(4-carboxyphenyl)benzene. Dalton Trans. 45, 18822 (2016)

    CAS  Article  Google Scholar 

  58. S.A. Ntim, O. Sae-Khow, F.A. Witzmann, S. Mitra, Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions. J. Colloid Interfaces Sci. 355, 383 (2011)

    Article  CAS  Google Scholar 

  59. S. Lin, Y. Pineda-Galvan, W.A. Maza, C.C. Epley, J. Zhu, M.C. Kessinger, Y. Pushkar, A.J. Morris, Electrochemical water oxidation by a catalyst-modified metal–organic framework thin film. Chemsuschem 10, 514 (2017)

    CAS  Article  Google Scholar 

  60. R. Shimoni, W. He, I. Liberman, I. Hod, Tuning of redox conductivity and electrocatalytic activity in metal–organic framework films via control of defect site density. J. Phys. Chem. C 123, 5531 (2019)

    CAS  Article  Google Scholar 

  61. A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications (Wiley, New York, 2001)

    Google Scholar 

Download references

Acknowledgments

This project was sponsored by Ministry of Science and Technology (MOST) of Taiwan under the project (110-2221-E-006-017-MY3). We thank the support from the Yushan Young Scholar Program, under Ministry of Education (MOE), Taiwan. This article was also supported in part by Higher Education Sprout Project, MOE, Taiwan to the Headquarters of University Advancement at National Cheng Kung University (NCKU). We gratefully acknowledge the use of high-resolution TEM belonging to the Center for Micro/Nano Science and Technology of NCKU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Wei Kung.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10619 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, YH., Shen, CH., Chang, TE. et al. Molybdenum-functionalized metal–organic framework crystals interconnected by carbon nanotubes as negative electrodes for supercapacitors. MRS Energy & Sustainability (2022). https://doi.org/10.1557/s43581-022-00034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43581-022-00034-y

Keywords

  • composite
  • electrodeposition
  • energy storage
  • metal–organic framework (MOF)
  • Mo
  • nanostructure