Skip to main content

One-step synthesis of NiS2/rGO composite for efficient electrocatalytic urea oxidation

Abstract

This work reveals that nickel disulfide and reduced graphene oxide can be integrated by one-step hydrothermal method. Compared to pure nickel disulfide, the prepared composite renders boosted electrocatalytic performance toward urea oxidation with high reaction rate constant and turnover frequency.

Urea electrolysis receives increasing attention, because it can remediate urea-contaminated wastewater and produce hydrogen fuel simultaneously. Developing advanced catalysts for urea oxidation reaction is highly desirable but still challenging. In this work, we reveal that nickel disulfide (NiS2) and reduced graphene oxide (rGO) can be successfully prepared by one-step hydrothermal reaction. NiS2/rGO composite material is characterized to exhibit improved electrical conductivity and larger electrochemical active surface area, which hold the key to promote the reaction kinetics of urea oxidation. The overall reaction rate constant is determined as 2.88 × 105 cm3 mol−1 s−1 for NiS2/rGO, which is \(\approx\) 75 times higher than that of NiS2 counterpart (3.87 × 103 cm3 mol−1 s−1). As a result, the NiS2/rGO electrocatalyst demonstrates superior catalytic performance toward urea oxidation with high catalytic current responses (220 vs. 113 mA cm−2 at 1.5 V), low Tafel slope (51 vs 87 mV dec−1), and turn–over frequency (0.055 vs. 0.024 s−1) in comparison with pure NiS2. Moreover, NiS2/rGO renders stable catatlytic performance in a 30,000 s test, addressing the crucial role of rGO in the composite sample.

Graphical abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Data availability

The authors confirm that all the data are available in the main article and its supporting materials.

References

  1. B.K. Boggs, R.L. King, G.G. Botte, Urea electrolysis: direct hydrogen production from urine. Chem. Commun. (2009). https://doi.org/10.1039/b905974a

    Article  Google Scholar 

  2. E. Urbańczyk, M. Sowa, W. Simka, Urea removal from aqueous solutions—a review. J. Appl. Electrochem. 46, 1011 (2016)

    Article  Google Scholar 

  3. X. Sun, R. Ding, Recent progress with electrocatalysts for urea electrolysis in alkaline media for energy-saving hydrogen production. Catal. Sci. Technol. 10, 1567 (2020)

    CAS  Article  Google Scholar 

  4. R.L. King, G.G. Botte, Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis. J. Power Sources 196, 9579 (2011)

    CAS  Article  Google Scholar 

  5. K. Ye, G. Wang, D. Cao, G. Wang, Recent advances in the electro-oxidation of urea for direct urea fuel cell and urea electrolysis. Top Curr. Chem. 376, 42 (2018)

    Article  Google Scholar 

  6. X. Hu, J. Zhu, J. Li, Q. Wu, Urea electrooxidation: current development and understanding of Ni-based catalysts. ChemElectroChem 7, 3211 (2020)

    CAS  Article  Google Scholar 

  7. B. Zhu, Z. Liang, R. Zou, Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 16, 1906133 (2020)

    CAS  Article  Google Scholar 

  8. S. Lu, M. Hummel, Z. Gu, Y. Wang, K. Wang, R. Pathak, Y. Zhou, H. Jia, X. Qi, X. Zhao, B.B. Xu, X. Liu, Highly efficient urea oxidation via nesting nano-nickel oxide in eggshell membrane-derived carbon. ACS Sustain. Chem. Eng. 9, 1703 (2021)

    CAS  Article  Google Scholar 

  9. W. Yang, X. Yang, C. Hou, B. Li, H. Gao, J. Lin, X. Luo, Rapid room-temperature fabrication of ultrathin Ni(OH)2 nanoflakes with abundant edge sites for efficient urea oxidation. Appl. Catal. B 259, 118020 (2019)

    CAS  Article  Google Scholar 

  10. M. Zhong, W. Li, C. Wang, X. Lu, Synthesis of hierarchical nickel sulfide nanotubes for highly efficient electrocatalytic urea oxidation. Appl. Surf. Sci. 575, 151708 (2022)

    CAS  Article  Google Scholar 

  11. H. Liu, Z. Liu, L. Feng, Bonding state synergy of the NiF2/Ni2P hybrid with the co-existence of covalent and ionic bonds and the application of this hybrid as a robust catalyst for the energy-relevant electrooxidation of water and urea. Nanoscale 11, 16017 (2019)

    CAS  Article  Google Scholar 

  12. S.N.K. Muhammed, A. Chandraraj, J. Rajkumar, D. Ayan, S.J. Neena, Remarkable COx tolerance of Ni3+ active species in a Ni2O3 catalyst for sustained electrochemical urea oxidation. J. Mater. Chem. A 10, 4209 (2022)

    Article  Google Scholar 

  13. Y.Y. Peng, M.S. Wu, Flower-like manganese oxide with intercalated nickel ions (Ni3+) as a catalytic electrode material for urea oxidation. Electrochim. Acta 410, 140022 (2022)

    CAS  Article  Google Scholar 

  14. S. Huang, Q. Zhang, P. Xin, J. Zhang, Q. Chen, J. Fu, Z. Jin, Q. Wang, Z. Hu, Construction of Fe-doped NiS-NiS2 heterostructured microspheres via etching prussian blue analogues for efficient water-urea splitting. Small 18, 2106841 (2022)

    CAS  Article  Google Scholar 

  15. K.S. Anuratha, Y.H. Tsai, S.Y. Lin, I.C. Chen, Z. Sofer, C.K. Hsieh, J.Y. Lin, Graphitic nanofibers decorated with Ni3S2 interlaced nanosheets as efficient binder-free cathodes for hybrid supercapacitors. Appl. Surf. Sci. 505, 143828 (2020)

    CAS  Article  Google Scholar 

  16. T. Wang, X. Guo, J. Zhang, W. Xiao, P. Xi, S. Peng, D. Gao, Electronic structure modulation of NiS2 by transition metal doping for accelerating the hydrogen evolution reaction. J. Mater. Chem. A 7, 4971 (2019)

    CAS  Article  Google Scholar 

  17. H. Liu, Z. Liu, F. Wang, L. Feng, Efficient catalysis of N doped NiS/NiS2 heterogeneous structure. Chem. Eng. J. 397, 125507 (2020)

    CAS  Article  Google Scholar 

  18. S. Wang, L. Zhao, J. Li, X. Tian, X. Wu, L. Feng, High valence state of Ni and Mo synergism in NiS2-MoS2 hetero-nanorods catalyst with layered surface structure for urea electrocatalysis. J. Energy Chem. 66, 483 (2022)

    Article  Google Scholar 

  19. S. Ligani Fereja, P. Li, Z. Zhang, J. Guo, Z. Fang, Z. Li, S. He, W. Chen, W-doping induced abundant active sites in a 3D NiS2/MoO2 heterostructure as an efficient electrocatalyst for urea oxidation and hydrogen evolution reaction. Chem. Eng. J. 432, 134274 (2022)

    CAS  Article  Google Scholar 

  20. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47, 145 (2009)

    CAS  Article  Google Scholar 

  21. N. Jiang, Q. Tang, M. Sheng, B. You, D.-E. Jiang, Y. Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 6, 1077 (2016)

    CAS  Article  Google Scholar 

  22. C. Heras, F. Agulló-Rueda, Raman spectroscopy of NiSe2 and NiS2-xSex (0<x<2) thin films. J. Phys. Condens. Matter. 12, 5317 (2000)

    Article  Google Scholar 

  23. G.K. Ramesh, S. Sampath, Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J. Phys. Chem. C 113, 7985 (2009)

    Article  Google Scholar 

  24. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007)

    CAS  Article  Google Scholar 

  25. P. Luo, H. Zhang, L. Liu, Y. Zhang, J. Deng, C. Xu, N. Hu, Y. Wang, Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Appl. Mater. Interfaces 9, 2500 (2017)

    CAS  Article  Google Scholar 

  26. J. Yu, G. Cheng, W. Luo, Ternary nickel-iron sulfide microflowers as a robust electrocatalyst for bifunctional water splitting. J. Mater. Chem. A 5, 15838 (2017)

    CAS  Article  Google Scholar 

  27. Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan, K. Cen, Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci. Rep. 4, 4684 (2014)

    Article  Google Scholar 

  28. W. Pi, T. Mei, J. Li, J. Wang, J. Li, X. Wang, Durian-like NiS2@rGO nanocomposites and their enhanced rate performance. Chem. Eng. J. 335, 275 (2018)

    CAS  Article  Google Scholar 

  29. T.H. Wu, I. Scivetti, J.C. Chen, J.A. Wang, G. Teobaldi, C.C. Hu, L.J. Hardwick, Quantitative resolution of complex stoichiometric changes during electrochemical cycling by density functional theory-assisted electrochemical quartz crystal microbalance. ACS Appl. Energy Mater. 3, 3347 (2020)

    CAS  Article  Google Scholar 

  30. W. Shi, J. Mao, X. Xu, W. Liu, L. Zhang, X. Cao, X. Lu, An ultra-dense NiS2/reduced graphene oxide composite cathode for high-volumetric/gravimetric energy density nickel-zinc batteries. J. Mater. Chem. A 7, 15654 (2019)

    CAS  Article  Google Scholar 

  31. V. Vedharathinam, G.G. Botte, Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium. Electrochim. Acta 81, 292 (2012)

    CAS  Article  Google Scholar 

  32. J. Liu, Y. Wang, Y. Liao, C. Wu, Y. Yan, H. Xie, Y. Chen, Heterostructured Ni3S2-Ni3P/NF as a bifunctional catalyst for overall urea-water electrolysis for hydrogen generation. ACS Appl. Mater. Interfaces 13, 26948 (2021)

    CAS  Article  Google Scholar 

  33. C.C. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347 (2015)

    CAS  Article  Google Scholar 

  34. R.K. Singh, A. Schechter, Electrochemical investigation of urea oxidation reaction on β Ni(OH)2 and Ni/Ni(OH)2. Electrochim. Acta 278, 405 (2018)

    CAS  Article  Google Scholar 

  35. Z. Ji, J. Liu, Y. Deng, S. Zhang, Z. Zhang, P. Du, Y. Zhao, X. Lu, Accurate synergy effect of Ni–Sn dual active sites enhances electrocatalytic oxidation of urea for hydrogen evolution in alkaline medium. J. Mater. Chem. A 8, 14680 (2020)

    CAS  Article  Google Scholar 

  36. L. Sha, T. Liu, K. Ye, K. Zhu, J. Yan, J. Yin, G. Wang, D. Cao, A heterogeneous interface on NiS@Ni3S2/NiMoO4 heterostructures for efficient urea electrolysis. J. Mater. Chem. A 8, 18055 (2020)

    CAS  Article  Google Scholar 

  37. T.H. Wu, Y.C. Lin, B.W. Hou, W.Y. Liang, Nanostructured β−NiS catalyst for enhanced and stable electro−oxidation of urea. Catalysts 10, 1280 (2020)

    CAS  Article  Google Scholar 

  38. D. Wei, W. Tang, Y. Wang, Hairy sphere-like Ni9S8/CuS/Cu2O composites grown on nickel foam as bifunctional electrocatalysts for hydrogen evolution and urea electrooxidation. Int. J. Hydrog. Energy 46, 20950 (2021)

    CAS  Article  Google Scholar 

  39. S. Zhou, X. Jin, S. Zhu, Q. Luo, Z. Qiu, A. Wu, H. Huang, S-O bond chemically constrained NiS2/rGO nanocomposite with enhanced Na-ion storage capacity. Chin. Chem. Lett. 31, 2353 (2020)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The financial support of this work by Ministry of Science and Technology, Taiwan (MOST 109-2222-E-224-001-MY3) is gratefully acknowledged. We greatly appreciated Advanced Instrumentation Center, National Yunlin University of Science and Technology for conducting SEM/EDX (MOST-110-2731-M-EM012200) and XPS (MOST-110-2731-M-ESCA001900) characterizations in this work.

Author information

Authors and Affiliations

Authors

Contributions

THW conceived and wrote the manuscript; JJZ synthesized the materials and performed the experiments; BWH and ZTQ carried out the material characterizations.

Corresponding author

Correspondence to Tzu−Ho Wu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 724 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Zhan, J., Hou, B. et al. One-step synthesis of NiS2/rGO composite for efficient electrocatalytic urea oxidation. MRS Energy & Sustainability (2022). https://doi.org/10.1557/s43581-022-00032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43581-022-00032-0

Keywords

  • environmentally protective
  • hydrothermal
  • sustainability
  • purification
  • waste management