Skip to main content

The transition of electrical systems to sustainability: Political and institutional drivers in Chile and Brazil

Abstract

Addressing climate change is one of the main challenges of twenty-first-century societies. In this context, the energy sector can contribute significantly to the reduction of anthropogenic emissions. Thus, global policies have focused on energy efficiency and the transition to non-conventional renewable energy sources. Still, unfortunately, these topics are often undeveloped and unstudied in countries of the Global South. In a tentative to fill this gap, this article focuses on the transition of the Chilean and Brazilian electrical systems. Notably, both countries have historically used hydro- and thermoelectricity as their predominant energy sources but introducing new resources in the latest years. Thus, this work aimed to analyze the creation and articulation of specific political–institutional arrangements to promote the energy matrix diversification from the beginning of this century and their possible effects on the energy transition process. Despite differences in their paths, the cases analyzed present common elements, such as the crises as triggers and the implementation of energy policy packages since the 2000s decade.

Highlights

In 2000, solar, wind, geothermal, and renewable thermoelectricity accounted for 1.6% and 2.3% of the total electricity generated in Chile and Brazil, respectively. In 2018, this number increased to 14.6% in Chile and 17.7% in Brazil.

Both Chile and Brazil faced intense climate crises in the past, which added to a lack in the diversification of energy sources, stimulated complex scenarios of electricity supply. The introduction of non-conventional renewable sources can contribute to improving this vulnerability.

Discussion

The complexity of the current scenario stimulated by environmental and social demands requires increasingly comprehensive energy sustainable policies.

Long-term energy policies and the design of State plans are pivotal to sustainable resources management, considering the vulnerability of electrical systems in the face of climate change. In this matter, new socio-political arrangements and broad citizen participation are essential.

This is a preview of subscription content, access via your institution.

Figure 1

Source Developed by the authors based on data from Reference 40.

Figure 2

Source developed by the authors based on data from Reference 40.

Figure 3

Source developed by the authors based on data from Reference 40.

Figure 4

Source developed by the authors based on data from OLADE (2019).

Figure 5

Source developed by the authors.

Figure 6

Source developed by the authors.

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Notes

  1. 1.

    Reservoir storage capacity, flexibility, and system interconnection that allows energy from one region to be used in another region when in energy shortage.6

  2. 2.

    A device that converts energy into useful services, such as a car or television.12

  3. 3.

    According to Short Law I (2004) in Chile, non-conventional energy generation is geothermal, wind, solar energy, biomass, marine, cogeneration, and small hydropower plants.

  4. 4.

    Limited to 30 MW.

  5. 5.

    According to Law 20.257 (2008), those sources of non-conventional renewable energies are biomass, hydro power smaller than 20 MW, geothermal, solar, wind, or marine energy.

  6. 6.

    The average price was 79.3 USD/MWh in 2015 and 129 USD/MWh in 2013.70

  7. 7.

    Law regulated by Decree 4.059 of 2001.

References

  1. 1.

    D. Loorbach, N. Frantzeskaki, F. Avelino, Annu. Rev. Environ. Resour. 42(1), 599–626 (2017). https://doi.org/10.1146/annurev-environ-102014-021340

    Article  Google Scholar 

  2. 2.

    J. Meadowcroft, Policy Sci. 42(4), 323–340 (2009). https://doi.org/10.1007/s11077-009-9097-z

    Article  Google Scholar 

  3. 3.

    A. Cherp, V. Vinichenko, J. Jewell, E. Brutschin, B. Sovacool, Energy Res. Soc. Sci. 37, 175–190 (2018). https://doi.org/10.1016/j.erss.2017.09.015

    Article  Google Scholar 

  4. 4.

    Organización Latinoamericana de Energía, Panorama Energético de América Latina y El Caribe 2018 (OLADE, Quito, 2018)

    Google Scholar 

  5. 5.

    F.B. Tavares, P.V.S.C. Oliveira, D.L. Romeiro, Rev. Bras. Energia 24(2), 17 (2018)

    Google Scholar 

  6. 6.

    L.A. da C. Saporta, O papel dos reservatórios de hidroelétricas na integração da geração eólica no sistema interligado nacional (Programa de Pos-graduação em Planejamento Energético (COPPE), Universidade Federal do Río de Janeiro (UFRJ), Río de Janeiro, 2017). http://www.ppe.ufrj.br/images/publica%C3%A7%C3%B5es/doutorado/Luis_Alberto_da_Cunha_Saporta.pdf. Accessed 6 Aug 2020

  7. 7.

    P.M. Fearnside, Water Air Soil Pollut. 133, 69–96 (2002)

    CAS  Article  Google Scholar 

  8. 8.

    P.M. Fearnside, Mitig. Adapt. Strateg. Glob. Change 10(4), 675–691 (2005). https://doi.org/10.1007/s11027-005-7303-7

    Article  Google Scholar 

  9. 9.

    A. Kemenes, B.R. Forsberg, J.M. Melack, Geophys. Res. Lett. 34(12), L12809 (2007). https://doi.org/10.1029/2007GL029479

    CAS  Article  Google Scholar 

  10. 10.

    A. Maeck et al., Environ. Sci. Technol. 47(15), 8130–8137 (2013). https://doi.org/10.1021/es4003907

    CAS  Article  Google Scholar 

  11. 11.

    E.F. Moran, M.C. Lopez, N. Moore, N. Müller, D.W. Hyndman, Proc. Natl Acad. Sci. USA 115(47), 11891–11898 (2018). https://doi.org/10.1073/pnas.1809426115

    CAS  Article  Google Scholar 

  12. 12.

    B.K. Sovacool, Energy Res. Soc. Sci. 13, 202–215 (2016). https://doi.org/10.1016/j.erss.2015.12.020

    Article  Google Scholar 

  13. 13.

    K. Araújo, Energy Res. Soc. Sci. 1, 112–121 (2014). https://doi.org/10.1016/j.erss.2014.03.002

    Article  Google Scholar 

  14. 14.

    B.D. Solomon, K. Krishna, Energy Policy 39(11), 7422–7431 (2011). https://doi.org/10.1016/j.enpol.2011.09.009

    Article  Google Scholar 

  15. 15.

    F.W. Geels, Environ. Innov. Soc. Transit. 1(1), 24–40 (2011). https://doi.org/10.1016/j.eist.2011.02.002

    Article  Google Scholar 

  16. 16.

    A. Stirling, STEPS Work. Pap. 32, 45 (2009)

    Google Scholar 

  17. 17.

    B. Chen, Energy Ecol. Environ. 1(1), 1–2 (2016). https://doi.org/10.1007/s40974-016-0017-8

    CAS  Article  Google Scholar 

  18. 18.

    P.A. Owusu, S. Asumadu-Sarkodie, Cogent Eng. (2016). https://doi.org/10.1080/23311916.2016.1167990

    Article  Google Scholar 

  19. 19.

    C. Agostini, C. Silva, S. Nasirov, Sustainability 9(6), 1073 (2017). https://doi.org/10.3390/su9061073

    Article  Google Scholar 

  20. 20.

    C.M. Neira, G. Delamaza, Middle Atl. Rev. Latin Am. Stud. 2(1), 68–96 (2018). https://doi.org/10.23870/marlas.180

    Article  Google Scholar 

  21. 21.

    N.C.C. de Oliveira, Varia hist. 34(65), 315–346 (2018). https://doi.org/10.1590/0104-87752018000200003

    Article  Google Scholar 

  22. 22.

    J. Ribeiro Latini, M.A. Pedlowski, Desenvolv. Meio Ambiente (2016). https://doi.org/10.5380/dma.v37i0.42599

    Article  Google Scholar 

  23. 23.

    J. Schmidt, R. Cancella, A.O. Pereira, Renew. Energy 85, 137–147 (2016). https://doi.org/10.1016/j.renene.2015.06.010

    Article  Google Scholar 

  24. 24.

    C.A. de Melo, G. de M. Jannuzzi, S.V. Bajay, Renew. Sustain. Energy Rev. 61, 222–234 (2016). https://doi.org/10.1016/j.rser.2016.03.054

    Article  Google Scholar 

  25. 25.

    C. Rodríguez-Monroy, G. Mármol-Acitores, G. Nilsson-Cifuentes, Renew. Sustain. Energy Rev. 81, 937–945 (2018). https://doi.org/10.1016/j.rser.2017.08.059

    Article  Google Scholar 

  26. 26.

    P. Andrews-Speed, Energy Res. Soc. Sci. 13, 216–225 (2016). https://doi.org/10.1016/j.erss.2015.12.011

    Article  Google Scholar 

  27. 27.

    R.R. Brown, M.A. Farrelly, D.A. Loorbach, Glob. Environ. Change 23(4), 701–718 (2013). https://doi.org/10.1016/j.gloenvcha.2013.02.013

    Article  Google Scholar 

  28. 28.

    N. Frantzeskaki, D. Loorbach, J. Meadowcroft, IJSD 15(1/2), 19 (2012). https://doi.org/10.1504/IJSD.2012.044032

    Article  Google Scholar 

  29. 29.

    S. Jacobsson, A. Johnson, Energy Policy 28, 625–640 (2000). https://doi.org/10.1016/S0301-4215(00)00041-0

    Article  Google Scholar 

  30. 30.

    P.H. de Mello Santana, S.V. Bajay, Energy Rep. 2, 62–66 (2016). https://doi.org/10.1016/j.egyr.2016.02.001

    Article  Google Scholar 

  31. 31.

    J. Rosenow, F. Kern, K. Rogge, Energy Res. Soc. Sci. 33, 95–104 (2017). https://doi.org/10.1016/j.erss.2017.09.013

    Article  Google Scholar 

  32. 32.

    G. Aquila, E. de O. Pamplona, A.R. de Queiroz, P. Rotela Junior, M.N. Fonseca, Renew. Sustain. Energy Rev. 70, 1090–1098 (2017). https://doi.org/10.1016/j.rser.2016.12.013

    Article  Google Scholar 

  33. 33.

    T.B. Diniz, Expansão da indústria de geração eólica no Brasil: uma análise à luz da Nova Economia das Instituições, ppp 50, 24 (2018)

  34. 34.

    A. Ferreira et al., Renew. Sustain. Energy Rev. 81, 181–191 (2018). https://doi.org/10.1016/j.rser.2017.06.102

    Article  Google Scholar 

  35. 35.

    E. Melo, Estud. av. 27(77), 125–142 (2013). https://doi.org/10.1590/S0103-40142013000100010

    Article  Google Scholar 

  36. 36.

    B.J. Ruiz, V. Rodríguez, C. Bermann, Energy Policy 35(5), 2989–2994 (2007). https://doi.org/10.1016/j.enpol.2006.10.023

    Article  Google Scholar 

  37. 37.

    T. Landman, E. Carvalho, Issues and Methods in Comparative Politics An Introduction, 4th edn. (Routledge, London, 2016). https://doi.org/10.4324/9781315725376

    Book  Google Scholar 

  38. 38.

    CEPAL, CEPALSTAT Estadísticas e Indicadores (CEPALSTAT, 2019). https://estadisticas.cepal.org/cepalstat/WEB_CEPALSTAT/estadisticasIndicadores.asp?idioma=e. Accessed 25 Nov 2019

  39. 39.

    Comisión Nacional de Energía, Electricidad (Comisión Nacional de Energía, 2019). https://www.cne.cl/estadisticas/electricidad/. Accessed 10 Dec 2019

  40. 40.

    OLADE, SIELAC- Sistema de Información Energética de Latinoamérica y el Caribe (SIER, 2020). http://sier.olade.org. Accessed 29 Nov 2019

  41. 41.

    L. Bardin, El Análisis de Contenido, 3rd edn. (Akal, S.A, Madrid, 2002)

    Google Scholar 

  42. 42.

    Agencia Chilena de Eficiencia Energética (AChEE), Historia (Agencia Chilena de Eficiencia Energética). http://old.acee.cl/acerca-de-achee/historia. Accessed 2 Dec 2019

  43. 43.

    IAEA, Country Nuclear Power Profiles 2018 Edition. Chile 2018 (IAEA, 2018). https://www-pub.iaea.org/MTCD/Publications/PDF/cnpp2018/countryprofiles/Chile/Chile.htm. Accessed 2 Dec 2019

  44. 44.

    A. Honoré, Argentina: 2004 Gas Crisis (Oxford Institute for Energy Studies, Oxford, 2004)

    Google Scholar 

  45. 45.

    Comisión Nacional de Energía, Política Energética, Nuevos Lineamientos (Gobierno de Chile, Santiago, 2008)

    Google Scholar 

  46. 46.

    Corporación de Fomento de la Producción, Resolución 197 (Corporación de Fomento de la Producción, 2011), p. 5. https://www.leychile.cl/N?i=1025678&f=2011-05-24&p=. Accessed 29 Nov 2019

  47. 47.

    A. Urquiza, C. Amigo, M. Billi, P. Espinosa, Front. Energy Res. 6, 134 (2018). https://doi.org/10.3389/fenrg.2018.00134

    Article  Google Scholar 

  48. 48.

    Ministerio de Energía del Gobierno de Chile, Energía Para El Futuro (Ministerio de Energía del Gobierno de Chile, Santiago, 2012)

    Google Scholar 

  49. 49.

    Ministerio de Energía del Gobierno de Chile, Plan de Accion de Eficiencia Energetica 2020 (Ministerio de Energía del Gobierno de Chile, Santiago, 2013)

    Google Scholar 

  50. 50.

    Ministerio de Energía del Gobierno de Chile, Agenda Energía (Ministerio de Energía del Gobierno de Chile, Santiago, 2014)

    Google Scholar 

  51. 51.

    Ministerio de Energía del Gobierno de Chile, Energia 2050 (Ministerio de Energía del Gobierno de Chile, Santiago, 2015). http://www.energia2050.cl. Accessed 29 Nov 2019

  52. 52.

    Ministerio de Energía del Gobierno de Chile, Ruta Energética 2018–2022 (Ministerio de Energía del Gobierno de Chile, Santiago, 2018). http://www.energia.gob.cl/rutaenergetica2018-2022.pdf. Accessed 29 Nov 2019

  53. 53.

    Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos, Decreto 3.520 (Presidência da República, 2000), p. 5. http://www.mme.gov.br/documents/10584/1139101/Decreto+n%C2%BA+3520+de+21+de+junho+de+2000.pdf/c5feb956-3942-4b95-b52f-e7ac7fcee3cc. Accessed 5 Dec 2019

  54. 54.

    Ministério de Minas e Energia, Minas e Energia (CNPE, 2019). http://www.mme.gov.br/web/guest/conselhos-e-comites/cnpe#. Accessed 5 Dec 2019

  55. 55.

    Ministério de Minas e Energia and Empresa de Pesquisa Energética, Plano Nacional de Energia 2030 (PNE 2030) (Ministério de Minas e Energia, Brasília, 2007)

  56. 56.

    Ministério de Minas e Energia and Empresa de Pesquisa Energética, Matriz Energética Brasileira 2030 (Ministério de Minas e Energia, Brasília, 2007)

  57. 57.

    Ministério de Minas e Energia, Plano Nacional Eficiência Energética, Premissas e Diretrizes Básicas (Ministério de Minas e Energia, Brasil, 2011)

  58. 58.

    Grupo Coordenador de Conservação de Energia Elétrica (GCCE), Plano de Aplicação de Recursos do Programa Nacional de Conservação de Energia Elétrica PROCEL (Grupo Coordenador de Conservação de Energia Elétrica (GCCE), Brasil, 2017).

  59. 59.

    Grupo Coordenador de Conservação de Energia Elétrica (GCCE), Segundo Plano Anual De Aplicação de Recursos do Programa Nacional de Conservação de Energia Elétrica – PROCEL (Grupo Coordenador de Conservação de Energia Elétrica (GCCE), Brasil, 2018)

  60. 60.

    E. Braga and CNPE, Ministério de Minas e Energia Consultoria Jurídica, Resolução 4. 2015, p. 2

  61. 61.

    E.A. Rodrigues, M.C. Bertol, U.F. Castellano, Procedimento de elaboração do Plano Nacional de Energia (PNE) (Secretaria de Planejamento e Desenvolvimento Energético, Ministério de Minas e Energia, 2018)

  62. 62.

    G. Baigorrotegui B, Energy Res. Soc. Sci. 55, 198–207 (2019). https://doi.org/10.1016/j.erss.2019.05.018

    Article  Google Scholar 

  63. 63.

    Ministerio de Economía Fomento y Reconstrucción, Subsecretaría de Economía Fomento y Reconstrucción, Ley Num. 19.940. 2004, p. 14. https://www.leychile.cl/Navegar?idNorma=222380&idVersion=2004-03-13. Accessed 29 Nov 2019

  64. 64.

    Ministerio de Economía Fomento y Reconstrucción, Subsecretaría de Economía Fomento y Reconstrucción, Ley Num. 20.018. 2005, p. 3. https://www.leychile.cl/Navegar?idNorma=238139&idVersion=2005-05-19. Accessed 29 Nov 2019

  65. 65.

    Ministerio de Economía Fomento y Reconstrucción, Subsecretaría de Economía Fomento y Reconstrucción, Decreto 244. 2006. http://www.leychile.cl/N?i=246461&f=2015-09-30&p=. Accessed 29 Nov 2019

  66. 66.

    Ministerio de Economía Fomento y Reconstrucción, Subsecretaría de Economía Fomento y Reconstrucción, Ley 20.257. 2008, p. 5. https://www.leychile.cl/N?i=270212&f=2013-10-22&p=. Accessed 29 Nov 2019

  67. 67.

    Ministerio de Energía del Gobierno de Chile, Ley 20.698. 2013, p. 4. https://www.leychile.cl/N?i=1055402&f=2013-10-22&p=. Accessed 29 Nov 2019

  68. 68.

    Ministerio de Energía del Gobierno de Chile, Ley Num. 20.571. 2012. https://www.leychile.cl/Navegar?idNorma=1038211&idVersion=2012-03-22. Accessed 29 Nov 2019

  69. 69.

    Ministerio de Energía del Gobierno de Chile, Ley Num. 21.118. 2018, p. 4. https://www.leychile.cl/Navegar?idNorma=1125560&idVersion=2018-11-17. Accessed 29 Nov 2019

  70. 70.

    Comisión Nacional de Energía, Valor de la energía más bajo en la historia de las licitaciones en Chile - Comisión Nacional de Energía (Comisión Nacional de Energía, 2017). https://www.cne.cl/prensa/prensa-2017/11-noviembre-2017/valor-de-la-energia-mas-bajo-en-la-historia-de-las-licitaciones-en-chile/. Accessed 17 Feb 2020

  71. 71.

    S. Nasirov, C. Agostini, C. Silva, G. Caceres, Clean Technol. Environ. Policy 20(1), 3–12 (2018). https://doi.org/10.1007/s10098-017-1434-x

    Article  Google Scholar 

  72. 72.

    Ministerio de Energía del Gobierno de Chile, Decreto 6. 2015, p. 6. https://www.leychile.cl/N?i=1077841&f=2015-05-25&p=. Accessed 29 Nov 2019

  73. 73.

    Ministerio de Energía del Gobierno de Chile, Ley 20.936. 2017, p. 76. https://www.leychile.cl/N?i=1092695&f=2017-02-09&p=. Accessed 29 Nov 2019

  74. 74.

    CNPE, Ministério de Minas e Energia Consultoria Jurídica, Resolução 3. 2001, p. 1

  75. 75.

    L. Altoé, J.M. Costa, D. Oliveira Filho, F.J.R. Martinez, A.H. Ferrarez, a. de A. Viana, Estud. av. 31(89), 285–297 (2017). https://doi.org/10.1590/s0103-40142017.31890022

  76. 76.

    M. Fossati, V.A. Scalco, V.C.C. Linczuk, R. Lamberts, Renew. Sustain. Energy Rev. 65, 1216–1231 (2016). https://doi.org/10.1016/j.rser.2016.06.048

    Article  Google Scholar 

  77. 77.

    Agência Canal Energia, Governo publica decretos que regulamentam Procel e Política de Conservação e Uso Racional de Energia, canalenergia.com, June 28, 2019. https://canalenergia.com.br/noticias/53103902/governo-publica-decretos-que-regulamentam-procel-e-politica-de-conservacao-e-uso-racional-de-energia. Accessed 27 May 2020

  78. 78.

    Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos, Lei 10.438. 2002. http://www.planalto.gov.br/ccivil_03/LEIS/2002/L10438.htm. Accessed 29 Nov 2019

  79. 79.

    Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos, Decreto 4.541. 2002. http://www.planalto.gov.br/ccivil_03/decreto/2002/D4541.htm. Accessed 29 Nov 2019

  80. 80.

    Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos, Lei 10.762. 2003. http://www.planalto.gov.br/ccivil_03/Leis/2003/L10.762.htm. Accessed 29 Nov 2019

  81. 81.

    Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos, Decreto 5.025. 2004. http://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2004/Decreto/D5025.htm. Accessed 29 Nov 2019

  82. 82.

    Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos, Decreto 5.445. 2005. http://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2005/Decreto/D5445.htm. Accessed 29 Nov 2019

  83. 83.

    S.V. Bajay, Á.A.F. Leite, C.B.D. Carvalho, I.L. Dorileo, in Anais do 6. Encontro de Energia no Meio Rural, Campinas, SP, Brasil, 2006, p. 9. http://www.proceedings.scielo.br/scielo.php?script=sci_arttext&pid=MSC0000000022006000200025&lng=pt&nrm=iso. Accessed 29 Nov 2019

  84. 84.

    Agência Nacional de Energia Elétrica (ANEEL), Resolução 687. 2015. http://www2.aneel.gov.br/cedoc/ren2015687.pdf. Accessed 8 Dec 2019

  85. 85.

    G.G. Dranka, P. Ferreira, Energy Policy 136, 111033 (2020). https://doi.org/10.1016/j.enpol.2019.111033

    Article  Google Scholar 

  86. 86.

    Ministerio da Ciência, Tecnologia, Inovações e Comunicações, Estrategia para a Transformação Digital (Ministerio da Ciência, Tecnologia, Inovações e Comunicações, Brasília, 2018). http://www.mctic.gov.br/mctic/export/sites/institucional/estrategiadigital.pdf. Accessed 29 Nov 2019

  87. 87.

    G. Honty, Nueva Soc. 234, 13 (2011)

    Google Scholar 

  88. 88.

    S. Nasirov, E. Cruz, C.A. Agostini, C. Silva, Energies 12(21), 4149 (2019). https://doi.org/10.3390/en12214149

    Article  Google Scholar 

  89. 89.

    International Renewable Energy Agency, Global LCOE and Auction Values (International Renewable Energy Agency, 2021). http://www.Statistics/View-Data-by-Topic/Costs/Global-LCOE-and-Auction-values. Accessed 18 May 2021

  90. 90.

    J.E. Rodríguez-Morales, Energy Res. Soc. Sci. 44, 324–335 (2018). https://doi.org/10.1016/j.erss.2018.05.031

    Article  Google Scholar 

  91. 91.

    M.M. Núñez-Regueiro, S.F. Siddiqui, R.J. Fletcher, Conserv. Biol. 35(1), 77–87 (2021). https://doi.org/10.1111/cobi.13452

    Article  Google Scholar 

  92. 92.

    L.S. Vargas, S. Püschel-Lovengreen, in 38th New Zealand Geothermal Workshop, Auckland, New Zealand, Nov 2016, p. 6

  93. 93.

    M.J. Burke, J.C. Stephens, Energy Res. Soc. Sci. 35, 78–93 (2018). https://doi.org/10.1016/j.erss.2017.10.018

    Article  Google Scholar 

  94. 94.

    C.G. Parker, Rev. estud. soc. 72, 2–17 (2020). https://doi.org/10.7440/res72.2020.01

    Article  Google Scholar 

  95. 95.

    F.M. de A. Collaço, C. Bermann, Estud. av. 31(89), 213–235 (2017). https://doi.org/10.1590/s0103-40142017.31890018

  96. 96.

    L.A.H. Nogueira, R.B. Cardoso, C.Z.B. Cavalcanti, P.A. Leonelli, Energy Sustain. Dev. 24, 58–69 (2015). https://doi.org/10.1016/j.esd.2014.12.002

    Article  Google Scholar 

  97. 97.

    J. Valdes, A.B. Poque González, L. Ramirez Camargo, M. Valin Fenández, Y. Masip Macia, W. Dorner, Energy Res. Soc. Sci. 54, 12–25 (2019). https://doi.org/10.1016/j.erss.2019.03.003

    Article  Google Scholar 

  98. 98.

    República de Chile, Senado, Senado - Tramitación de proyectos. Boletín 12058-08 Sobre eficiencia energética, senado.cl, March 18, 2020. https://www.senado.cl/appsenado/templates/tramitacion/index.php?boletin_ini=12058-08. Accessed 24 March 2020

  99. 99.

    C. Conde-Álvarez, Cambio climático en América Latina y el Caribe: Impactos, vulnerabilidad y adaptación, p. 8, 2007

  100. 100.

    IPCC, Cambio climático 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC, Ginebra, 2007). https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_sp.pdf. Accessed 29 Nov 2019

  101. 101.

    C. Pastén, Obras Proy. 11, 28–39 (2012). https://doi.org/10.4067/S0718-28132012000100003.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Becas Chile Program of the Agency for Research and Development (ANID), the State University of Campinas (Unicamp), and the Centre for Environmental Studies and Research (NEPAM) of the University of Campinas for providing professional support and infrastructure to develop this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Axel Bastián Poque González.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 54 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poque González, A.B., Viglio, J.E. & da Costa Ferreira, L. The transition of electrical systems to sustainability: Political and institutional drivers in Chile and Brazil. MRS Energy & Sustainability (2021). https://doi.org/10.1557/s43581-021-00011-x

Download citation

Keywords

  • sustainability
  • energy generation
  • renewable
  • government policy and funding
  • society