Skip to main content

Elaboration of bio-based building materials made from recycled olive core

A Correction to this article was published on 17 August 2021

This article has been updated

Highlights

  • Use of olive core wastes as sand in self-compacting mortar (SCM).

  • The behavior of SCM with olive core waste is evaluated by the physico-mechanical and thermal properties of different mixes.

  • The bulk density and thermal conductivity are improved by using of olive core wastes.

Abstract

The recycling of organic wastes in the field of civil engineering is a very important process as long as the products to be obtained are not subjected to stringent quality standards. This research is a part of the general policy of saving energy and protecting the environment. Its aim is to study the possibility of developing a new insulating building material by recycling vegetable waste from the olive processing industry (olive core) that discarded in nature. After having been sorted, dried and then extruded in the form of grains, these wastes are incorporated as fine aggregate (sand) in the manufacturing of self-compacting mortar (SCM) by substituting the mass of sand with different percentages (10, 20, 30 40 and 50%). The physico-mechanical and thermal properties of the obtained SCMs are analyzed and compared to the control. The results of this study show a decrease in density and compressive strength of SCM by increasing the content of olive core wastes. However, the thermal properties of SCM are improved through replacing sand by such wastes, which could allow using olive waste core based SCM in various types of nonstructural components with intriguing insulating properties.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Change history

References

  1. 1.

    A. Demirbas, Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 31(2), 171–192 (2005). https://doi.org/10.1016/j.pecs.2005.02.002

    CAS  Article  Google Scholar 

  2. 2.

    S. Mucahit, Influence of expanded vermiculite on physical properties and thermal conductivity of clay bricks. Ceram. Int. 41(2), 2819–2827 (2015). https://doi.org/10.1016/j.ceramint.2014.10.102

    CAS  Article  Google Scholar 

  3. 3.

    J. J. Del Coz Díaz, P. J. García Nieto, J. Domínguez Hernández, A. Suárez Sánchez, Thermal design optimization of lightweight concrete blocks for internal one way spanning slabs floors by FEM, Energy Build. 41 (12), 1276–1287 (2009). https://doi.org/10.1016/j.enbuild.2009.08.005

  4. 4.

    S. Mucahit, A. Sedat, The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceram. Int. 35(7), 2625–2631 (2009). https://doi.org/10.1016/j.ceramint.2009.02.027

    CAS  Article  Google Scholar 

  5. 5.

    D.G. Leo Samuel, K. Dharmasastha, S.M. Nagendra, M. Prakash Maiya, Thermal comfort in traditional buildings composed of local and modern construction materials. Int. J. Sustain. Built Environ. 6(2), 463–475 (2017). https://doi.org/10.1016/j.ijsbe.2017.08.001

    Article  Google Scholar 

  6. 6.

    S. Alkheder, Y.T. Obaidat, M. Taamneh, Effect of olive waste (husk) on behavior of cement paste. Case Stud. Construc. Mater. 5, 19–25 (2016). https://doi.org/10.1016/j.cscm.2016.05.001

    Article  Google Scholar 

  7. 7.

    M.S. Al-Homoud, Performance characteristics and practical applications of common building thermal insulation materials. Build. Environ. 40(3), 353–366 (2005). https://doi.org/10.1016/j.buildenv.2004.05.013

    Article  Google Scholar 

  8. 8.

    M.A. Nabil, M. Al-A, F.A. Khaled, Mousa, , Performance of olive waste ash concrete exposed to elevated temperatures. Fire Saf. J. 44(3), 370–375 (2009). https://doi.org/10.1016/j.firesaf.2008.08.006

    CAS  Article  Google Scholar 

  9. 9.

    A.P. Gursel, H. Maryman, C. Ostertag, A life-cycle approach to environmental, mechanical, and durability properties of green concrete mixes with rice husk ash. J. Clean. Prod. 112(1), 823–836 (2016). https://doi.org/10.1016/j.jclepro.2015.06.029

    Article  Google Scholar 

  10. 10.

    M. Guendouz, F. Debieb, O. Boukendakdji, E.H. Kadri, M. Bentchikou, H. Soualhi, Use of plastic waste in sand concrete. J. Mater. Environ. Sci. 7(2), 382–389 (2016)

    CAS  Google Scholar 

  11. 11.

    T. Blankendaal, P. Schuur, H. Voordijk, Reducing the environmental impact of concrete and asphalt: a scenario approach. J. Clean. Prod. 66, 27–36 (2014). https://doi.org/10.1016/j.jclepro.2013.10.012

    Article  Google Scholar 

  12. 12.

    D. Boukhelkhal, O. Boukendakdji, S. Kenai, E.H. Kadri, Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC. Adv. Concret. Construc. 6(1), 69–85 (2018). https://doi.org/10.12989/acc.2018.6.1.069

    Article  Google Scholar 

  13. 13.

    K.H. Mo, U.J. Alengaram, M.Z. Jumaat, S.P. Yap, Feasibility study of high volume slag as cement replacement for sustainable structural lightweight oil palm shell concrete. J. Clean. Prod. 91, 297–304 (2015). https://doi.org/10.1016/j.jclepro.2014.12.021

    Article  Google Scholar 

  14. 14.

    H. Zhao, W. Sun, X. Wu, B. Gao, The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures. J. Clean. Prod. 95, 66–74 (2015). https://doi.org/10.1016/j.jclepro.2015.02.050

    Article  Google Scholar 

  15. 15.

    B. Zhang, C.S. Poon, Use of furnace bottom ash for producing lightweight aggregate with thermal insulation properties. J. Clean. Prod. 99, 94–100 (2015). https://doi.org/10.1016/j.jclepro.2015.03.007

    CAS  Article  Google Scholar 

  16. 16.

    M. Singh, R. Siddique, Properties of concrete containing high volumes of coal bottom ash as fine aggregate. J. Clean. Prod. 91, 269–278 (2015). https://doi.org/10.1016/j.jclepro.2014.12.026

    Article  Google Scholar 

  17. 17.

    M. Guendouz, D. Boukhelkhal, Properties of flowable sand concrete containing ceramic wastes. J. Adhesion Sci Technol. 33(24), 2661–2683 (2019). https://doi.org/10.1080/01694243.2019.1653594

    CAS  Article  Google Scholar 

  18. 18.

    M. Guendouz, D. Boukhelkhal, A. Bourdot, O. Babachikh, A. Hamadouche, The effect of ceramic wastes on physical and mechanical properties of eco-friendly flowable sand concrete. Ceramic Materials. IntechOpen. 10, 2 (2020). https://doi.org/10.5772/intechopen.95041

    Article  Google Scholar 

  19. 19.

    S.R. Karade, Cement-bonded composites from lingo cellulosic wastes. Constr. Build. Mater. 24(8), 1323–1330 (2010). https://doi.org/10.1016/j.conbuildmat.2010.02.003

    Article  Google Scholar 

  20. 20.

    K.H. Mo, U.J. Alengaram, M.Z. Jumaat, A review on the use of agriculture waste material as lightweight aggregate for reinforced concrete structural members. Adv. Mater. Sci. Eng. 9, 365197 (2014). https://doi.org/10.1155/2014/365197

    Article  Google Scholar 

  21. 21.

    P. Shafigh, H.B. Mahmud, M.Z. Jumaat, M. Zargar, Agricultural wastes as aggregate in concrete mixtures: a review. Constr. Build. Mater. 53, 110–117 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.074

    Article  Google Scholar 

  22. 22.

    N.M. Al-Akhras, B.A. Abu-Alfoul, Effect of wheat straw ash on mechanical properties of autoclaved mortar. Cem. Concr. Res. 32(6), 859–863 (2002). https://doi.org/10.1016/S0008-8846(02)00716-0

    CAS  Article  Google Scholar 

  23. 23.

    F. Wu, C. Liu, L. Zhang, Y. Lu, Y. Ma, Comparative study of carbonized peach shell and carbonized apricot shell to improve the performance of lightweight concrete. Constr. Build. Mater. 188, 758–771 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.094

    CAS  Article  Google Scholar 

  24. 24.

    M. Guendouz, Dj. Boukhelkhal, Properties of dune sand concrete containing coffee waste, MATEC Web of Conferences, 149, 01039 (2018). doi:https://doi.org/10.1051/matecconf/201814901039

  25. 25.

    A. Agarwal, B. Nanda, D. Maity, Experimental investigation on chemically treated bamboo reinforced concrete beams and columns. Constr. Build. Mater. 71, 610–617 (2014). https://doi.org/10.1016/j.conbuildmat.2014.09.011

    Article  Google Scholar 

  26. 26.

    V. Agopyan, J.H. Savastano, V.M. John, M.A. Cincotto, Developments on vegetable fiber cement based materials in Sao Paulo, Brazil: an overview. Cem Concr. Compos. 27(5), 527–536 (2005). https://doi.org/10.1016/j.cemconcomp.2004.09.004

    CAS  Article  Google Scholar 

  27. 27.

    F. Pacheco-Torgal, S. Jalali, Cementitious building materials reinforced with vegetable fibres: a review. Constr. Build. Mater. 25(2), 575–581 (2011). https://doi.org/10.1016/j.conbuildmat.2010.07.024

    Article  Google Scholar 

  28. 28.

    A. Bourdot, C. Magniont, M. Lagouin, C. Niyigena, P. Evon, S. Amziane, Impact of bio-aggregates properties on the chemical interactions with mineral binder, application to vegetal concrete. J. Adv. Concr. Technol. 17(9), 542–558 (2019). https://doi.org/10.3151/jact.17.542

    CAS  Article  Google Scholar 

  29. 29.

    H. Binici, F. Yucegok, O. Aksogan, H. Kaplan, Effect of corncob, wheat straw, and plane leaf ashes as mineral admixtures on concrete durability. J. Mater. Civ. Eng. 20(7), 478–483 (2008)

    CAS  Article  Google Scholar 

  30. 30.

    N.M. Al-Akhras, M.Y. Abdulwahid, Utilisation of olive waste ash in mortar mixes. Struct. Concr. 11(4), 221–228 (2010). https://doi.org/10.1680/stco.2010.11.4.221

    Article  Google Scholar 

  31. 31.

    E. Aprianti, P. Shafigh, S. Bahri, J.N. Farahani, Supplementary cementitious materials origin from agricultural wastes—a review. Constr. Build. Mater. 74, 176–187 (2015). https://doi.org/10.1016/j.conbuildmat.2014.10.010

    Article  Google Scholar 

  32. 32.

    M. Safiuddin, M.A. Salam, M.Z. Jumaat, Utilization of palm oil fuel ash in concrete: a review. J. Civ. Eng. Manag. 17(2), 234–247 (2011)

    Article  Google Scholar 

  33. 33.

    L. Salmabanu, L. Ta-Wui, L. Ismail, Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: a review. Compos. B 175, 107076 (2019). https://doi.org/10.1016/j.compositesb.2019.107076

    CAS  Article  Google Scholar 

  34. 34.

    G.H.M.J.S. De Silva, S. Vishvalingam, T. Etampawala, Effect of waste rice husk ash from rice husk fuelled brick kilns on strength, durability and thermal performances of mortar. Constr. Build. Mater. 268, 121794 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121794

    CAS  Article  Google Scholar 

  35. 35.

    L. Kerrai, B. Salah, S. Roland, R. Fetiha, Valorisation of organic waste: Use of olive kernels and pomace for cement manufacture. J. Clean. Prod. 277, 123703. https://doi.org/10.1016/j.jclepro.2020.123703 (2020).

  36. 36.

    J. Cuenca, J. Rodríguez, M. Martín-Morales, Z. Sánchez-Roldán, M. Zamorano, Effects of olive residue biomass fly ash as filler in self-compacting concrete. Constr. Build. Mater. 40, 702–709 (2013). https://doi.org/10.1016/j.conbuildmat.2012.09.101

    Article  Google Scholar 

  37. 37.

    M. Sutcu, S. Ozturk, E. Yalamac, O. Gencel, Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method. J. Environ. Manag. 181, 185–192 (2016). https://doi.org/10.1016/j.jenvman.2016.06.023

    Article  Google Scholar 

  38. 38.

    A. Eisa, Properties of concrete incorporating recycled post-consumer environmental wastes. Int J Concr Struct Mater. 8(3), 251–258 (2014). https://doi.org/10.1007/s40069-013-00659

    CAS  Article  Google Scholar 

  39. 39.

    C. Leiva, F.L. Vilches, J. Vale, C. Fernández-Pereira, Influence of the type of ash on the fire resistance characteristics of ash-enriched mortars. Fuel 84(11), 1433–1439 (2005). https://doi.org/10.1016/j.fuel.2004.08.031

    CAS  Article  Google Scholar 

  40. 40.

    N.M. Al-Akhras, Performance of olive waste ash concrete exposed to alkali-Silica reaction. Struct. Concr. J. 13(4), 221–226 (2012). https://doi.org/10.1002/suco.201100058

    Article  Google Scholar 

  41. 41.

    M.N. Al-Akhras, K.M. Al-Akhras, M.F. Attom, Performance of olive waste ash concrete exposed to elevated temperatures. Fire Saf. J. 44(3), 370–375 (2009). https://doi.org/10.1016/j.firesaf.2008.08.006

    CAS  Article  Google Scholar 

  42. 42.

    H. Mekki, M. Anderson, M. Benzina, E. Ammar, Valorization of olive mill waste water by its incorporation in building bricks. J. Hazard. Mater. 158(2–3), 308–315 (2008). https://doi.org/10.1016/j.jhazmat.2008.01.104

    CAS  Article  Google Scholar 

  43. 43.

    M.D. La Rubia-García, A. Yebra-Rodríguez, D. Eliche-Quesada, F.A. Corpas-Iglesias, A. Lopez-Galindo, Assessment of olive mill solid residue (pomace) as an additive in lightweight brick production. Const. Build. Mater. 36, 495–500 (2012). https://doi.org/10.1016/j.conbuildmat.2012.06.009

    Article  Google Scholar 

  44. 44.

    F. Barreca, C.R. Fichera, Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energy Build. 62, 507–513 (2013). https://doi.org/10.1016/j.enbuild.2013.03.040

    Article  Google Scholar 

  45. 45.

    EFNARC recommendations, The European guidelines for self-compacting concrete, Specification, Production and use, EFNARC Edition (United Kingdom, 2002), p. 63.

  46. 46.

    Y. Edamatsu, T. Sugamata, M. Ouchi, A mix-design method for self-compacting concrete based on mortar flow and funnel tests. In: Proceedings of 3rd international symposium on self-compacting concrete, Reykjavik, Iceland, 345–55 (2003).

  47. 47.

    H. Okamura, K. Ozawa, Mix-design for self-compacting concrete. Concrete Library of JSCE 25, 107–127 (1995)

    Google Scholar 

  48. 48.

    P.R. De Matos, R. Pilar, L.H. Bromerchenkel, R.A. Schankoski, P.J.P. Gleize, J. De Brito, Self-compacting mortars produced with fine fraction of calcined waste foundry sand (WFS) as alternative filler: fresh-state, hydration and hardened-state properties. J. Clean. Prod. 252, 119871 (2020). https://doi.org/10.1016/j.jclepro.2019.119871

    CAS  Article  Google Scholar 

  49. 49.

    A. Lozano-Lunar, P.R. Da Silva, J. De Brito, J.M. Fernandez, J.R. Jimenez, Safe use of electric arc furnace dust as secondary raw material in self-compacting mortars production. J. Clean. Prod. 211, 1375–1388 (2019). https://doi.org/10.1016/j.jclepro.2018.12.002

    CAS  Article  Google Scholar 

  50. 50.

    A. Lozano-Lunar, I. Dubchenko, S. Bashynskyi, A. Rodero, J.M. Fernández, J.R. Jiménez, Performance of self-compacting mortars with granite sludge as Aggregate. Constr. Build. Mater. 251, 118998 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118998

    CAS  Article  Google Scholar 

  51. 51.

    A. Tuaum, S. Shitote, W. Oyawa, Experimental study of self-compacting mortar incorporating recycled glass aggregate. Buildings 8, 15 (2018). https://doi.org/10.3390/buildings8020015

    Article  Google Scholar 

  52. 52.

    A. Santamaría, J.J. Gonzalez, M.M. Losanez, M. Skaf, V. Ortega-Lopez, The design of self-compacting structural mortar containing steelmaking slags as aggregate. Cement Concr. Compos. 111, 103627 (2020). https://doi.org/10.1016/j.cemconcomp.2020.103627

    CAS  Article  Google Scholar 

  53. 53.

    Effect on physical and mechanical properties, B. Safi, M. Saidi, Dj. Aboutaleb, M. Maallem, The use of plastic waste as fine aggregate in the self-compacting mortars. Constr. and Build. Mater. 43, 436–442 (2013). https://doi.org/10.1016/j.conbuildmat.2013.02.049

    Article  Google Scholar 

  54. 54.

    B. Safi, M. Saidi, A. Daoui, A. Bellal, A. Mechekak, K. Toumi, The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM). Constr. Build. Mater. 78, 430–438 (2015). https://doi.org/10.1016/j.conbuildmat.2015.01.009

    Article  Google Scholar 

  55. 55.

    T. Bouziani, M. Bederina, M. Hadjoudja, Effect of dune sand on the properties of flowing sand-concrete (FSC). Int. J. Concr. Struct. Mater. 6(1), 59–64 (2012). https://doi.org/10.1007/s40069-012-0006-z

    CAS  Article  Google Scholar 

  56. 56.

    NF EN 196–1, Methods of testing cements—Part 1: determination of strengths, AFNOR (2016).

  57. 57.

    NF EN 12390–7, Tests for hardened concrete—Part 7: Density of hardened concrete, AFNOR (2019).

  58. 58.

    NF EN 13057, Products and systems for the protection and repair of concrete structures - Test methods - Determination of capillary absorption, AFNOR (2002).

  59. 59.

    NF P15–433, Methods of cements testing—Determination of shrinkage and swelling, AFNOR (1994).

  60. 60.

    NF EN 993–15, Test methods for dense shaped refractories—Part 15: Determination of thermal conductivity by the hot wire method (parallel), AFNOR (2005).

  61. 61.

    D.K. Panesar, B. Shindman, The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cement Concr. Compos. 34(9), 982–992 (2012). https://doi.org/10.1016/j.cemconcomp.2012.06.003

    CAS  Article  Google Scholar 

  62. 62.

    M. Cabrera, A.P. Galvín, F. Agrela, M.D. Carvajal, J. Ayuso, Characterisation and technical feasibility of using biomass bottom ash for civil infrastructures. Constr. Build. Mater. 58, 234–244 (2014). https://doi.org/10.1016/j.conbuildmat.2014.01.087

    Article  Google Scholar 

  63. 63.

    B. Carrasco, N. Cruz, J. Terrados, F.A. Corpas, L. Pérez, An evaluation of bottom ash from plant biomass as a replacement for cement in building blocks. Fuel 118, 272–280 (2014). https://doi.org/10.1016/j.fuel.2013.10.077

    CAS  Article  Google Scholar 

  64. 64.

    G.B. Manuel, B. Auxi, A. Francisco, R.J. José, J. De Brito, Mechanical performance of bedding mortars made with olive biomass bottom ash. Constr. Build. Mater. 112, 699–707 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.065

    CAS  Article  Google Scholar 

  65. 65.

    L. Stefania, R. Chiara, M. Francesco, S. Pietro, C. Caterina, P. Giovanni, Characterization of biomass-based materials for building applications: the case of straw and olive tree waste. Ind. Crops Prod. 147(112229), 1–12 (2020). https://doi.org/10.1016/j.indcrop.2020.112229

    CAS  Article  Google Scholar 

  66. 66.

    T. Canan, S. Ozkan, T. Mehmet Ali, A comparative study on the thermal conductivities and mechanical properties of lightweight concretes, Energy Build. 151, 469–475 (2017). https://doi.org/10.1016/j.enbuild.2017.07.013

  67. 67.

    S. Djadouf, A. Tahakourt, N. Chelouah, D. Merabet, Use of olive pomace and hay as additions in the manufacture of terracotta bricks, International seminar, innovation & valuation in Civil Engineering & Building Materials, 1O-051.

  68. 68.

    S. Mucahit, O. Savas, Y. Emre, G. Osman, Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method. J. Environ. Manag. 181, 185–192 (2016). https://doi.org/10.1016/j.jenvman.2016.06.023

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohamed Guendouz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boukhelkhal, D., Guendouz, M., Bourdot, A. et al. Elaboration of bio-based building materials made from recycled olive core. MRS Energy & Sustainability (2021). https://doi.org/10.1557/s43581-021-00006-8

Download citation

Keywords

  • biomaterial
  • recycling
  • thermal conductivity