Skip to main content

Prospects on large-scale manufacturing of solid state batteries


Widespread deployment of solid state batteries requires facile, high-throughput coating processes. Solid state batteries that utilize energy dense anodes may have similar manufacturing costs as traditional lithium ion batteries.


Widespread deployment of renewable energy and electrification of transportation are necessary to decrease greenhouse gas emissions. All solid-state batteries that employ a solid electrolyte, instead of a liquid electrolyte, are well suited for energy dense anodes (e.g., Li metal, Si, etc.) and may be capable of extending the current driving range of an electric vehicles by nearly 2 \(\times\). However, to achieve giga-scale capacities relevant to the EV market large-scale manufacturing approaches are necessary. Solid-state batteries are likely to adopt coating techniques and processing approaches similar to solid oxide fuel cells and conventional battery systems. While control over microstructure, interfaces, and thickness are paramount for achieving long lifetimes, processing speed governs cost and scalability. This perspective highlights the state-of-the-art for solid-state battery manufacturing approaches and highlights the importance of utilizing conventional battery manufacturing approaches for achieving price parity in the near term. Decreasing material costs and improving cell architecture (biploar) may further decrease manufacturing costs.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1.

    J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J.T. Turnure, L. Westfall, International Energy Outlook 2016 with Projections to 2040 (2016)

  2. 2.

    M.B. Dixit, W. Zaman, Y. Bootwala, Y. Zheng, M.C. Hatzell, K.B. Hatzell, Scalable manufacturing of hybrid solid electrolytes with interface control. ACS Appl. Mater. Interfaces 11, 45087–45097 (2019)

    CAS  Google Scholar 

  3. 3.

    S. Wenzel, S.J. Sedlmaier, C. Dietrich, W.G. Zeier, J. Janek, Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion. 318, 102–112 (2018)

    CAS  Google Scholar 

  4. 4.

    J. Janek, W.G. Zeier, A solid future for battery development. Energy 500, 300 (2016)

    Google Scholar 

  5. 5.

    F. Duffner, L. Mauler, M. Wentker, J. Leker, M. Winter, Large-scale automotive battery cell manufacturing: analyzing strategic and operational effects on manufacturing costs. Int. J. Prod. Econ. 232, 107982 (2021)

    Google Scholar 

  6. 6.

    J. Schnell, F. Tietz, C. Singer, A. Hofer, N. Billot, G. Reinhart, Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. Energy Environ. Sci. 12, 1818–1833 (2019)

    CAS  Google Scholar 

  7. 7.

    A. Bielefeld, D.A. Weber, J. Janek, Microstructural modeling of composite cathodes for all-solid-state batteries. J. Phys. Chem. C 123, 1626–1634 (2018)

    Google Scholar 

  8. 8.

    W. Zhang, D.A. Weber et al., Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017)

    CAS  Google Scholar 

  9. 9.

    M.B. Dixit, A. Verma, W. Zaman, X. Zhong, P. Kenesei, J.S. Park, J. Almer, P.P. Mukherjee, K.B. Hatzell, Synchrotron imaging of pore formation in Li metal solid-state batteries aided by machine learning. ACS Appl. Energy Mater. 3, 9534–9542 (2020)

    CAS  Google Scholar 

  10. 10.

    K.B. Hatzell, M.B. Dixit, S.A. Berlinger, A.Z. Weber, Understanding inks for porous-electrode formation. J. Mater. Chem. A 5, 20527–20533 (2017)

    CAS  Google Scholar 

  11. 11.

    F. Shen, M.B. Dixit, W. Zaman, N. Hortance, B. Rogers, K.B. Hatzell, Composite electrode ink formulation for all solid-state batteries. J. Electrochem. Soc. 166, A3182 (2019)

    Google Scholar 

  12. 12.

    D.L. Wood III., J. Li, C. Daniel, Prospects for reducing the processing cost of lithium ion batteries. J. Power Sour. 275, 234–242 (2015)

    CAS  Google Scholar 

  13. 13.

    D.L. Wood III., J. Li, S.J. An, Formation challenges of lithium-ion battery manufacturing. Joule 3, 2884–2888 (2019)

    Google Scholar 

  14. 14.

    J. Li et al., Toward low-cost, high-energy density, and high-power density lithium-ion batteries. Jom 69, 1484–1496 (2017)

    CAS  Google Scholar 

  15. 15.

    I. Gurevitch, R. Buonsanti, A.A. Teran, B. Gludovatz, R.O. Ritchie, J. Cabana, N.P. Balsara, Nanocomposites of titanium dioxide and polystyrene-poly (ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J. Electrochem. Soc. 160, A1611–A1617 (2013)

    CAS  Google Scholar 

  16. 16.

    D. Devaux, K.J. Harry, D.Y. Parkinson, R. Yuan, D.T. Hallinan, A.A. MacDowell, N.P. Balsara, Failure mode of lithium metal batteries with a block copolymer electrolyte analyzed by x-ray microtomography. J. Electrochem. Soc. 162, A1301–A1309 (2015)

    CAS  Google Scholar 

  17. 17.

    I. Villaluenga, K.H. Wujcik, W. Tong, D. Devaux, D.H. Wong, J.M. DeSimone, N.P. Balsara, Compliant glass-polymer hybrid single ion-conducting electrolytes for lithium batteries. Proc. Natl. Acad. Sci. 113, 52–57 (2016)

    CAS  Google Scholar 

  18. 18.

    Z. Zhang, S. Chen, J. Yang, J. Wang, L. Yao, X. Yao, P. Cui, X. Xu, Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl. Mater. Interfaces 10, 2556–2565 (2018)

    CAS  Google Scholar 

  19. 19.

    B. Scrosati, New approaches to developing lithium polymer batteries. Chem. Rec. 1, 173–181 (2001)

    CAS  Google Scholar 

  20. 20.

    F. Croce, G. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456 (1998)

    CAS  Google Scholar 

  21. 21.

    W. Krawiec, L. Scanlon Jr., J. Fellner, R. Vaia, S. Vasudevan, E. Giannelis, Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J. Power Sour. 54, 310–315 (1995)

    CAS  Google Scholar 

  22. 22.

    Y. Lu, S.K. Das, S.S. Moganty, L.A. Archer, Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv. Mater. 24, 4430–4435 (2012)

    CAS  Google Scholar 

  23. 23.

    J.L. Schaefer, S.S. Moganty, D.A. Yanga, L.A. Archer, Nanoporous hybrid electrolytes. J. Mater. Chem. 21, 10094–10101 (2011)

    CAS  Google Scholar 

  24. 24.

    J. Zheng, P. Wang, H. Liu, Y. Hu, Interface-enabled ion conduction in Li10GeP2S12-polyethylene oxide hybrid electrolytes. ACS Appl. Energy Mater. 2, 1452–1459 (2019)

    CAS  Google Scholar 

  25. 25.

    J. Zheng, M. Tang, Y.-Y. Hu, Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. 128, 12726–12730 (2016)

    Google Scholar 

  26. 26.

    W. Zaman, N.M. Hortance, M.B. Dixit, V. De Andrande, K.B. Hatzell, Visualizing percolation and ion transport in hybrid solid electrolytes for Li-metal batteries. J. Mater. Chem. A 7, 23914–23921 (2019)

    CAS  Google Scholar 

  27. 27.

    A.S. Pandian, X.C. Chen, J. Chen, B.S. Lokitz, R.E. Ruther, G. Yang, K. Lou, J. Nanda, F.M. Delnick, N.J. Dudney, Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings. J. Power Sour. 390, 153–164 (2018)

    CAS  Google Scholar 

  28. 28.

    X.C. Chen, X. Liu, A. Samuthira Pandian, K. Lou, F.M. Delnick, N.J. Dudney, Determining and minimizing resistance for ion transport at the polymer/ceramic electrolyte interface. ACS Energy Lett. 4, 1080–1085 (2019)

    CAS  Google Scholar 

  29. 29.

    W.E. Tenhaeff, X. Yu, K. Hong, K.A. Perry, N.J. Dudney, Ionic transport across interfaces of solid glass and polymer electrolytes for lithium ion batteries. J. Electrochem. Soc. 158, A1143–A1149 (2011)

    CAS  Google Scholar 

  30. 30.

    W. Wang, E. Yi, A.J. Fici, R.M. Laine, J. Kieffer, Lithium ion conducting poly (ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. J. Phys. Chem. C 121, 2563–2573 (2017)

    CAS  Google Scholar 

  31. 31.

    B.D. McCloskey, Attainable gravimetric and volumetric energy density of Li-S and Li ion battery cells with solid separator-protected Li metal anodes. J. Phys. Chem. Lett. 6, 4581–4588 (2015)

    CAS  Google Scholar 

  32. 32.

    J. Cebollero, R. Lahoz, M. Laguna-Bercero, J. Peña, A. Larrea, V. Orera, Characterization of laser-processed thin ceramic membranes for electrolyte-supported solid oxide fuel cells. Int. J. Hydrogen Energy 42, 13939–13948 (2017)

    CAS  Google Scholar 

  33. 33.

    K.B. Hatzell et al., Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 5, 922–934 (2020)

    CAS  Google Scholar 

  34. 34.

    M.B. Dixit, N. Singh, J.P. Horwath, P.D. Shevchenko, M. Jones, E.A. Stach, T.S. Arthur, K.B. Hatzell, In situ investigation of chemomechanical effects in thiophosphate solid electrolytes. Matter 3, 2138–2159 (2020)

    Google Scholar 

  35. 35.

    M.B. Dixit et al., Nanoscale mapping of extrinsic interfaces in hybrid solid electrolytes. Joule 4, 207–221 (2020)

    CAS  Google Scholar 

  36. 36.

    Y.-H. Kim, H.-J. Kim, J.-H. Koh, J.-G. Ha, Y.-H. Yun, S.-M. Nam, Fabrication of BaTiO3-PTFE composite film for embedded capacitor employing aerosol deposition. Ceram. Int. 37, 1859–1864 (2011)

    CAS  Google Scholar 

  37. 37.

    I. Erilin, D. Agarkov, I. Burmistrov, V. Pukha, D. Yalovenko, N. Lyskov, M. Levin, S. Bredikhin, Aerosol deposition of thin-film solid electrolyte membranes for anode-supported solid oxide fuel cells. Mater. Lett. 266, 127439 (2020)

    CAS  Google Scholar 

  38. 38.

    J. Schnell, H. Knorzer, A.J. Imbsweiler, G. Reinhart, Solid versus liquid—A bottom-up calculation model to analyze the manufacturing cost of future high-energy batteries. Energy Technol. 8, 1901237 (2020)

    CAS  Google Scholar 

  39. 39.

    C. Singer, J. Schnell, G. Reinhart, Scalable processing routes for the production of all-solid-state batteries-modeling interdependencies of product and process. Energy Technol. 9, 2000665 (2020)

    Google Scholar 

  40. 40.

    R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018)

    CAS  Google Scholar 

  41. 41.

    A. Sakti, J.J. Michalek, E.R. Fuchs, J.F. Whitacre, A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. J. Power Sour. 273, 966–980 (2015)

    CAS  Google Scholar 

  42. 42.

    P.A. Nelson, K.G. Gallagher, I.D. Bloom, D.W. Dees, Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles (Argonne National Lab, Argonne, 2012).

    Google Scholar 

  43. 43.

    R.E. Ciez, J. Whitacre, Comparison between cylindrical and prismatic lithium-ion cell costs using a process based cost model. J. Power Sour. 340, 273–281 (2017)

    CAS  Google Scholar 

  44. 44.

    G.T. Hitz et al., High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater. Today 22, 50–57 (2019)

    CAS  Google Scholar 

  45. 45.

    T. Liu, Y. Yuan, X. Tao, Z. Lin, J. Lu, Bipolar electrodes for next-generation rechargeable batteries. Adv. Sci. 7, 2001207 (2020)

    CAS  Google Scholar 

Download references


The authors were supported by the National Science Foundation under Grant Nos. 1847029 and 31727863.

Author information



Corresponding author

Correspondence to Kelsey B. Hatzell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hatzell, K., Zheng, Y. Prospects on large-scale manufacturing of solid state batteries. MRS Energy & Sustainability 8, 33–39 (2021).

Download citation


  • scale-up/manufacturing
  • energy storage
  • interface
  • transportation