Advances and obstacles in pressure-driven solid-state cooling: A review of barocaloric materials

Highlights

Barocaloric methods offer the widest range among solid-state caloric materials where to pick and choose. However, ideal barocaloric materials do not exist and a trade-off is required; Materials with high refrigerant capacity suffer from poor thermal conductivity and low density, and conversely.

Abstract

Solid-state caloric effects promise since decades a disruptive cooling technology that should be more efficient and cleaner than current vapor compression. However, despite relevant achievements have been made, it is still difficult to foresee the time left for the development and wide implementation of competitive devices. Recent progress in the response of materials under hydrostatic pressure offers hope for overcoming some of the shortcomings posed by other solid-state methods and augurs a good outlook for barocaloric cooling, but there are still many struggles ahead to address in order to demonstrate its viability as a commercial cooling technique. Here we briefly review the milestones achieved in terms of barocaloric materials and discuss the pending challenges and expectations for the oncoming years.

Graphic abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S.F. Pearson, Refrigerants past, present and future, international Congress of Refrigeration (Washington DC, USA). (2003), http://www.r744.com/files/pdf_597.pdf. Accessed Sept 2020

  2. 2.

    T. Peters, A cool world—Defining the energy conundrum of cooling for all (2018), https://www.birmingham.ac.uk/Documents/college-eps/energy/Publications/2018-clean-coldreport.pdf. Accessed Nov 2019

  3. 3.

    S. Solomon, Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37, 275 (1999)

    CAS  Article  Google Scholar 

  4. 4.

    A. Kitanovski, Energy applications of magnetocaloric materials. Adv. Energy Mater. 10, 1903741 (2020)

    CAS  Article  Google Scholar 

  5. 5.

    R. Gauß, G. Homm, O. Gutfleisch, The resource basis of magnetic refrigeration. J. Ind. Ecol. 21, 1291 (2017)

    Article  CAS  Google Scholar 

  6. 6.

    EPA: Phaseout of Ozone-Depleting Substances (ODS). https://www.epa.gov/ods-phaseout. Accessed Sept 2020.

  7. 7.

    Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006 (2014), https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=uriserv:OJ.L_.2014.150.01.0195.01.ENG. Accessed July 2020

  8. 8.

    2018 Assessment Report of the Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee, https://ozone.unep.org/sites/default/files/2019–04/RTOC-assessment-report-2018_0.pdf. Accessed Sept 2020

  9. 9.

    Energy savings potential and rd&d opportunities for non-vapor-compression hvac technologies, https://www.energy.gov/sites/prod/files/2014/03/f12/Non-Vapor%20Compression%20HVAC%20Report.pdf. Accessed July 2019

  10. 10.

    C. Aprea, A. Greco, A. Maiorino, C. Masselli, The environmental impact of solid-state materials working in an active caloric refrigerator compared to a vapor compression cooler. Int. J. Heat Technol. 36, 1155 (2018)

    Article  Google Scholar 

  11. 11.

    J. Gough, A description of a property of caoutchouc, or indian rubber. Mem. Lit. Phil. Soc. Manchester 1, 288 (1805)

    Google Scholar 

  12. 12.

    P. Weiss, A. Piccard, Le phénomène magnétocalorique. J. Phys. 7, 103 (1917)

    Google Scholar 

  13. 13.

    P. Kobeko, J. Kurtschatov, Dielektrische Eigenshaften der Seignettesalzkristalle. Zeit. Phys. 66, 192 (1930)

    CAS  Article  Google Scholar 

  14. 14.

    V.K. Pecharsky, K.A. Gschneidner, Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494 (1997)

    CAS  Article  Google Scholar 

  15. 15.

    G. Krishan, K.C. Aw, R.N. Sharma, Synthetic jet impingement heat transfer enhancement—a review. Appl. Therm. Eng. 149, 1305 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    J. Shi, D. Han, Z. Li, L. Yang, S.-G. Lu, Z. Zhong, J. Chen, Q. Zhang, X. Qian, Electrocaloric cooling materials and devices for zero-global-warming-potential high-efficiency refrigeration. Joule 3, 1200 (2019)

    Article  Google Scholar 

  17. 17.

    K. Engelbrecht, Future prospects for elastocaloric devices. J. Phys. 1, 021001 (2019)

    CAS  Google Scholar 

  18. 18.

    E.L. Rodríguez, F.E. Filisko, Thermoelastic temperature changes in poly(methyl methacrylate) at high hydrostatic pressure: experimental. J. Appl. Phys. 53, 6536 (1982)

    Article  Google Scholar 

  19. 19.

    K.A. Muuller, F. Fauth, S. Fischer, M. Koch, A. Furrer, P. Lacorre, Cooling by adiabatic pressure application in Pr1-xLaxNiO3. Appl. Phys. Lett. 73, 1056 (1998)

    Article  Google Scholar 

  20. 20.

    L. Manosa, D. Gonzalez-Alonso, A. Planes, E. Bonnot, M. Barrio, J.-L. Tamarit, S. Aksoy, M. Acet, Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat. Mater. 9, 478 (2010)

    CAS  Article  Google Scholar 

  21. 21.

    X. Moya, E. Defay, N.D. Mathur, S. Hirose, Electrocaloric effects in multilayer capacitors for cooling applications. MRS Bull. 43, 291–294 (2018)

    CAS  Article  Google Scholar 

  22. 22.

    F. Zhu, J. Lin, W. Jiang, C. Yang, L. Li, X. Zhang, W. Song, X. Zhu, P. Tong, Y. Sun, Enhanced mechanical properties and large magnetocaloric effect in epoxy-bonded Mn0.98CoGe. Scripta Mater. 150, 96 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    C. Aprea, A. Greco, A. Maiorino, C. Masselli, Enhancing the heat transfer in an active barocaloric cooling system using ethylene-glycol based nanofluids as secondary medium. Energies (2019). https://doi.org/10.3390/en12152902

    Article  Google Scholar 

  24. 24.

    M. Valant, Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57, 980 (2012)

    CAS  Article  Google Scholar 

  25. 25.

    A. Kumar, A. Thakre, D.-Y. Jeong, J. Ryu, Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics. J. Mater. Chem. C 7, 6836 (2019)

    CAS  Article  Google Scholar 

  26. 26.

    L. Porenta, P. Kabirifar, A. Žerovnik, M. Čebron, B. Žužek, M. Dolenec, M. Brojan, J. Tušek, Thin-walled Ni-Ti tubes under compression: ideal candidates for efficient and fatigue-resistant elastocaloric cooling. Appl. Mater. Today 20, 100712 (2020)

    Article  Google Scholar 

  27. 27.

    L. Manosa, A. Planes, Materials with giant mechanocaloric effects: cooling by strength. Adv. Mater. 29, 1603607 (2017)

    Article  CAS  Google Scholar 

  28. 28.

    T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch, Making a cool choice: the materials library of magnetic refrigeration. Adv. Energy Mater. 9, 1901322 (2019)

    Article  CAS  Google Scholar 

  29. 29.

    F.J. Perez-Reche, E. Vives, L. Manosa, A. Planes, Athermal character of structural phase transitions. Phys. Rev. Lett. 87, 195701 (2001)

    CAS  Article  Google Scholar 

  30. 30.

    K.A. Gschneidner, V.K. Pecharsky, Magnetocaloric Materials. Annu. Rev. Mater. Sci. 30, 387 (2000)

    CAS  Article  Google Scholar 

  31. 31.

    E. Bruck, H. Yibole, L. Zhang, A universal metric for ferroic energy materials. Philos. Trans. A Math. Phys. Eng. Sci. 374, 20150303 (2016)

    Google Scholar 

  32. 32.

    A. Krivchikov, G. Vdovichenko, O. Korolyuk, F. Bermejo, L. Pardo, J. Tamarit, A. Jezowski, D. Szewczyk, Effects of site-occupation disorder on the low-temperature thermal conductivity of molecular crystals. J. Non-Cryst. Solids 407, 141 (2015)

    CAS  Article  Google Scholar 

  33. 33.

    E.-B.S. Mettawee, G.M. Assassa, Thermal conductivity enhancement in a latent heat storage system. Sol. Energy 81, 839 (2007)

    CAS  Article  Google Scholar 

  34. 34.

    X. Wang, Q. Guo, Y. Zhong, X. Wei, L. Liu, Heat transfer enhancement of neopentyl glycol using compressed expanded natural graphite for thermal energy storage. Renew. Energy 51, 241 (2013)

    CAS  Article  Google Scholar 

  35. 35.

    E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.-L. Tamarit, S. Pramanick, S. Majumdar, S. Yuce, B. Emre, C. Frontera, L. Manosa, Tailoring barocaloric and magnetocaloric properties in low-hysteresis magnetic shape memory alloys. Acta Mater. 96, 324 (2015)

    CAS  Article  Google Scholar 

  36. 36.

    P. Lloveras, T. Samanta, M. Barrio, I. Dubenko, N. Ali, J.-L. Tamarit, S. Stadler, Giant reversible barocaloric response of (MnNiSi)1–x(FeCoGe)x (x = 0.39, 0.40, 0.41). APL Mater. 7, 061106 (2019)

    Article  CAS  Google Scholar 

  37. 37.

    A. Aznar, A. Gràcia-Condal, A. Planes, P. Lloveras, M. Barrio, J.-L. Tamarit, W. Xiong, D. Cong, C. Popescu, L. Manosa, Giant barocaloric effect in all-d-metal Heusler shape memory alloys. Phys. Rev. Mater. 3, 044406 (2019)

    CAS  Article  Google Scholar 

  38. 38.

    H. Liu, Z. Li, Y. Zhang, Z. Ni, K. Xu, Y. Liu, A large barocaloric effect associated with paramagnetic martensitic transformation in Co50Fe2.5V31.5Ga16 quaternary Heusler alloy. Scr. Mater. 177, 1 (2020)

    CAS  Article  Google Scholar 

  39. 39.

    D. Matsunami, A. Fujita, K. Takenaka, M. Kano, Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat. Mater. 14, 73 (2014)

    Article  CAS  Google Scholar 

  40. 40.

    R.R. Wu, L.F. Bao, F.X. Hu, Q.Z. Huang, J. Wang, X.L. Dong, G.N. Li, J.R. Sun, F.R. Shen, T.Y. Zhao, X.Q. Zheng, L.C. Wang, Y. Liu, W.L. Zuo, Y.Y. Zhao, M. Zhang, Z.C. Wang, C.Q. Jin, G.H. Ro, X.F. Han, B.G. Shen, Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature. Sci. Rep. 5, 18027 (2015)

    CAS  Article  Google Scholar 

  41. 41.

    D. Boldrin, E. Mendive-Tapia, J. Zemen, J.B. Staunton, T. Hansen, A. Aznar, J.-L. Tamarit, M. Barrio, P. Lloveras, J. Kim, X. Moya, L.F. Cohen, Multisite exchange-enhanced barocaloric response in Mn3NiN. Phys. Rev. X 8, 041035 (2018)

    CAS  Google Scholar 

  42. 42.

    A. Aznar, P. Lloveras, J.-Y. Kim, E. Stern-Taulats, M. Barrio, J.L. Tamarit, C.F. Sanchez-Valdes, J.L. Sanchez Llamazares, N.D. Mathur, X. Moya, Giant and reversible inverse barocaloric effects near room temperature in ferromagnetic MnCoGeB0.03. Adv. Mater. 31, 1903577 (2019)

    Article  CAS  Google Scholar 

  43. 43.

    E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.-L. Tamarit, S. Pramanick, S. Majumdar, C. Frontera, L. Mañosa, Barocaloric and magnetocaloric effects in Fe49Rh51. Phys. Rev. B 89, 214105 (2014)

    Article  CAS  Google Scholar 

  44. 44.

    E. Stern-Taulats, A. Gracia-Condal, A. Planes, P. Lloveras, M. Barrio, J.-L. Tamarit, S. Pramanick, S. Majumdar, L. Mañosa, Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe49Rh51. Appl. Phys. Lett. 107, 152409 (2015)

    Article  CAS  Google Scholar 

  45. 45.

    J. Lin, P. Tong, X. Zhang, Z. Wang, Z. Zhang, B. Li, G. Zhong, J. Chen, Y. Wu, H. Lu, L. He, B. Bai, L. Ling, W. Song, Z. Zhang, Y. Sun, Giant room-temperature barocaloric effect at the electronic phase transition in Ni1-xFexS. Mater. Horiz. 7, 2690 (2020)

    CAS  Article  Google Scholar 

  46. 46.

    Y.K. Kuo, K.M. Sivakumar, H.C. Chen, J.H. Su, C.S. Lue, Anomalous thermal properties of the Heusler alloy Ni2+xMn1-xGa near the martensitic transition. Phys. Rev. B 72, 054116 (2005)

    Article  CAS  Google Scholar 

  47. 47.

    B. Zhang, X.X. Zhang, S.Y. Yu, J.L. Chen, Z.X. Cao, G.H. Wu, Giant magnetothermal conductivity in the NiMnIn ferromagnetic shape memory alloys. Appl. Phys. Lett. 91, 012510 (2007)

    Article  CAS  Google Scholar 

  48. 48.

    Q. Zheng, S.E. Murray, Z. Diao, A. Bhutani, D.P. Shoemaker, D. Cahill, Thermal transport through the magnetic martensitic transition in MnxMGe (M=Co, Ni). Phys. Rev. Mater. 2, 075401 (2018)

    Article  Google Scholar 

  49. 49.

    E. Stern-Taulats, T. Castán, L. Mañosa, A. Planes, N.D. Mathur, X. Moya, Multicaloric materials and effects. MRS Bull. 43, 295 (2018)

    Article  Google Scholar 

  50. 50.

    T. Gottschall, A. Gràcia-Condal, M. Fries, A. Taubel, L. Pfeuffer, L. Manosa, A. Planes, K.P. Skokov, O. Gutfleisch, A multicaloric cooling cycle that exploits thermal hysteresis. Nat. Mater. 17, 929 (2018)

    CAS  Article  Google Scholar 

  51. 51.

    J.M. Bermúdez-Garcia, M. Sanchez-Andújar, S. Castro-García, J. López-Beceiro, R. Artiaga, M.A. Senaris-Rodriıguez, Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nat. Commun. 8, 15715 (2017)

    Article  CAS  Google Scholar 

  52. 52.

    J.M. Bermudez-Garcia, S. Yanez-Vilar, A. Garcia-Fernandez, M. Sanchez-Andujar, S. Castro-Garcia, J. Lopez-Beceiro, R. Artiaga, M. Dilshad, X. Moya, M.A. Senaris-Rodriguez, Giant barocaloric tunability in [(CH3CH2CH2)4N]Cd[N(CN)2]3 hybrid perovskite. J. Mater. Chem. C 6, 9867 (2018)

    CAS  Article  Google Scholar 

  53. 53.

    M. Szafranski, W.-J. Wei, Z.-M. Wang, W. Li, A. Katrusiak, Research update: Tricritical point and large caloric effect in a hybrid organic-inorganic perovskite. APL Mater. 6, 100701 (2018)

    Article  CAS  Google Scholar 

  54. 54.

    J. Salgado-Beceiro, A. Nonato, R.X. Silva, A. García-Fernández, M. Sánchez-Andújar, S. Castro-García, E. Stern-Taulats, M.A. Señarís-Rodríguez, X. Moya, J.M. Bermúdez-García, Near-room-temperature reversible giant barocaloric effects in [(CH3)4N]Mn[N3]3 hybrid perovskite. Mater. Adv. (2020). https://doi.org/10.1039/d0ma00652a

    Article  Google Scholar 

  55. 55.

    J.M. Bermúdez-García, M. Sánchez-Andújar, M.A. Señarís-Rodríguez, A new playground for organic−inorganic hybrids: barocaloric materials for pressure-induced solid-state cooling. J. Phys. Chem. Lett. 8, 4419 (2017)

    Article  CAS  Google Scholar 

  56. 56.

    K.G. Sandeman, Research update: the mechanocaloric potential of spin crossover compounds. APL Mater. 4, 111102 (2016)

    Article  CAS  Google Scholar 

  57. 57.

    S.P. Vallone, A.N. Tantillo, A.M. dos Santos, J.J. Mo-laison, R. Kulmaczewski, A. Chapoy, P. Ahmadi, M.A. Halcrow, K.G. Sandeman, Giant barocaloric effect at the spin crossover transition of a molecular crystal. Adv. Mater. 31, 1807334 (2019)

    Article  CAS  Google Scholar 

  58. 58.

    P.J. von Ranke, B.P. Alho, P.H.S. da Silva, R.M. Ribas, E.P. Nobrega, V.S.R. de Sousa, M.V. Colaco, L.F. Marques, M.S. Reis, F.M. Scaldini, L.B.L. Escobar, P.O. Ribeiro, Large barocaloric effect in spin-crossover complex [CrI2(depe)2]. J. Appl. Phys. 127, 165104 (2020)

    Article  CAS  Google Scholar 

  59. 59.

    M.S. Reis, Magnetocaloric and barocaloric effects of metal complexes for solid state cooling: review, trends and perspectives. Coord. Chem. Rev. 417, 213357 (2020)

    CAS  Article  Google Scholar 

  60. 60.

    K. Ridier, Y. Zhang, M. Piedrahita-Bello, C.M. Quintero, L. Salmon, G. Molnar, C. Bergaud, A. Bousseksou, Heat capacity and thermal damping properties of spin-crossover molecules: a new look at an old topic. Adv. Mater. 32, 2000987 (2020)

    CAS  Article  Google Scholar 

  61. 61.

    B. Huang, A. McGaughey, M. Kaviany, Thermal conductivity of metal-organic framework 5 (MOF-5): part I. Molecular dynamics simulations. Int. J. Heat Mass Transf. 50, 393 (2007)

    CAS  Article  Google Scholar 

  62. 62.

    J. Huang, X. Xia, X. Hu, S. Li, K. Liu, A general method for measuring the thermal conductivity of MOF crystals. Int. J. Heat Mass Transfer 138, 11 (2019)

    CAS  Article  Google Scholar 

  63. 63.

    W.D.C.B. Gunatilleke, K. Wei, Z. Niu, L. Wojtas, G. Nolas, S. Ma, Thermal conductivity of a perovskite-type metal–organic framework crystal. Dalton Trans. 46, 13342 (2017)

    CAS  Article  Google Scholar 

  64. 64.

    N. Nik Ibrahim, S.M. Said, A. Mainal, M. Mohd Sabri, N. Abdullah, M. Megat Hasnan, H. Che Hassan, M. Mohd Salleh, W. Wan Mohd Mahiyiddin, Molecular design strategies for spin-crossover ({SCO}) metal complexes (Fe(II) and Co(II)) for thermoelectricity. Mater. Res. Bull. 126, 110828 (2020)

    CAS  Article  Google Scholar 

  65. 65.

    P. Lloveras, E. Stern-Taulats, M. Barrio, J.-L. Tamarit, S. Crossley, W. Li, V. Pomjakushin, A. Planes, L. Manosa, N.D. Mathur, X. Moya, Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat. Commun. 6, 8801 (2015)

    CAS  Article  Google Scholar 

  66. 66.

    E.A. Mikhaleva, I.N. Flerov, M.V. Gorev, M.S. Molokeev, A.V. Cherepakhin, A.V. Kartashev, N.V. Mikhashenok, K.A. Sablina, Caloric characteristics of {P}b{T}i{O}$_3$ in the temperature range of the ferroelectric phase transition. Phys. Solid State 54, 1832 (2012)

    CAS  Article  Google Scholar 

  67. 67.

    T.K. Song, S.-M. Lee, Y.S. Yu, S.-I. Kwun, Dielectric and thermal studies on the high temperature phases of (NH4)2SO4. Ferroelectrics 159, 215 (1994)

    Article  Google Scholar 

  68. 68.

    Y. Fu, D.J. Singh, Thermal conductivity of perovskite KTaO3 and PbTiO3 from first principles. Phys. Rev. Mater. 2, 094408 (2018)

    CAS  Article  Google Scholar 

  69. 69.

    M.V. Gorev, E.V. Bogdanov, I.N. Flerov, V.N. Voronov, N.M. Laptash, Barocaloric effect in oxyfluorides Rb2KTiOF5 and (NH4)2NbOF5. Ferroelectrics 397, 76 (2010)

    CAS  Article  Google Scholar 

  70. 70.

    M.V. Gorev, E.V. Bogdanov, I.N. Flerov, A.G. Kocharova, N.M. Laptash, Investigation of thermal expansion, phase diagrams, and barocaloric effect in the (NH4)2WO2F4 and (NH4)2MoO2F4 oxyfluorides. Phys. Solid State 52, 167 (2010)

    CAS  Article  Google Scholar 

  71. 71.

    I.N. Flerov, A.V. Kartashev, M.V. Gorev, E.V. Bogdanov, S.V. Mel’nikova, M.S. Molokeev, E.I. Pogoreltsev, N.M. Laptash, Thermal, structural, optical, dielectric and barocaloric properties at ferroelastic phase transition in trigonal (NH4)2SnF6: A new look at the old compound. J. Fluoresc. Chem. 183, 1 (2016)

    CAS  Article  Google Scholar 

  72. 72.

    A. Aznar, P. Lloveras, M. Romanini, M. Barrio, J.-L. Tamarit, C. Cazorla, D. Errandonea, N.D. Mathur, A. Planes, X. Moya, L. Manosa, Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nat. Commun. 8, 1851 (2017)

    Article  CAS  Google Scholar 

  73. 73.

    M. Goetz, J. Cowen, The thermal conductivity of silver iodide. Solid State Commun. 41, 293 (1982)

    CAS  Article  Google Scholar 

  74. 74.

    A.K. Sagotra, D. Chu, C. Cazorla, Room-temperature mechanocaloric effects in lithium-based superionic materials. Nat. Commun. 9, 3337 (2018)

    Article  CAS  Google Scholar 

  75. 75.

    J. Min, A.K. Sagotra, C. Cazorla, Large barocaloric effects in thermoelectric superionic materials. Phys. Rev. Mater. 4, 015403 (2020)

    CAS  Article  Google Scholar 

  76. 76.

    N. Ma, M.S. Reis, Barocaloric effect on graphene. Sci. Rep. 7, 13257 (2017)

    Article  CAS  Google Scholar 

  77. 77.

    C. Aprea, A. Greco, A. Maiorino, C. Masselli, The environmental impact of solid-state materials working in an active caloric refrigerator compared to a vapor compression cooler. Int. J. Heat Technol. 36, 801 (2018)

    Article  Google Scholar 

  78. 78.

    B. Li, Y. Kawakita, S. Ohira-Kawamura, T. Sugahara, H. Wang, J. Wang, Y. Chen, S.I. Kawaguchi, S. Kawaguchi, K. Ohara, K. Li, D. Yu, R. Mole, T. Hattori, T. Kikuchi, S.-I. Yano, Z. Zhang, Z. Zhang, W. Ren, S. Lin, O. Sakata, K. Nakajima, Z. Zhang, Colossal barocaloric effects in plastic crystals. Nature 567, 506 (2019)

    CAS  Article  Google Scholar 

  79. 79.

    P. Lloveras, A. Aznar, M. Barrio, P. Negrier, C. Popescu, A. Planes, L. Manosa, E. Stern-Taulats, A. Avramenko, N.D. Mathur, X. Moya, J.-L. Tamarit, Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol. Nat. Commun. 10, 1803 (2019)

    CAS  Article  Google Scholar 

  80. 80.

    A. Aznar, P. Lloveras, M. Barrio, P. Negrier, A. Planes, L. Manosa, N.D. Mathur, X. Moya, J.-L. Tamarit, Reversible and irreversible colossal barocaloric effects in plastic crystals. J. Mater. Chem. A 8, 639 (2020)

    CAS  Article  Google Scholar 

  81. 81.

    J. Li, D. Dunstan, X. Lou, A. Planes, L. Manosa, M. Barrio, J.L. Tamarit, P. Lloveras, Reversible barocaloric effects over a large temperature span in fullerite C60. J. Mater. Chem. A 8, 20354 (2020)

    CAS  Article  Google Scholar 

  82. 82.

    C.H. Son, J.H. Morehouse, Thermal conductivity enhancement of solid-solid phase-change materials for thermal storage. J. Thermophys. Heat Transf. 5, 122 (1991)

    CAS  Article  Google Scholar 

  83. 83.

    S. Akbulut, Y. Ocak, K. Keslioglu, N. Marasli, Thermal conductivities of solid and liquid phases for neopentylglycol, aminomethylpropanediol and their binary alloy. J. Phys. Chem. Sol. 70, 72 (2009)

    CAS  Article  Google Scholar 

  84. 84.

    B. Praveen, S. Suresh, Experimental study on heat transfer performance of neopentyl glycol/CuO composite solid-solid PCM in TES based heat sink. Eng. Sci. Technol. Int. J. 21, 1086 (2018)

    Google Scholar 

  85. 85.

    Z.-Y. Zhang, Y.-P. Xu, M.-L. Yang, Measurement of the thermal conductivities of neopentylglycol, 1,1,1-trihydroxymethylpropane, and their mixture in the temperature range from 20°C to their supermelting temperatures. J. Chem. Eng. Data 45, 1060 (2000)

    CAS  Article  Google Scholar 

  86. 86.

    N. Zhang, Y. Song, Y. Du, G. Xiao, Y. Gui, A novel solid-solid phase change material: pentaglycerine/expanded graphite composite PCMs. Adv. Eng. Mater. 20, 1800237 (2018)

    Article  CAS  Google Scholar 

  87. 87.

    N. Zhang, Y. Jing, Y. Song, Y. Du, Y. Yuan, Thermal properties and crystallization kinetics of pentaglycerine/graphene nanoplatelets composite phase change material for thermal energy storage. Int. J. Energy Res. 44, 448 (2020)

    CAS  Article  Google Scholar 

  88. 88.

    S. Yuce, M. Barrio, B. Emre, E. Stern-Taulats, A. Planes, J.-L. Tamarit, Y. Mudryk, K.A. Gschneidner, V.K. Pecharsky, L. Manosa, Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2. Appl. Phys. Lett. 101, 071906 (2012)

    Article  CAS  Google Scholar 

  89. 89.

    L. Manosa, D. Gonzalez-Alonso, A. Planes, M. Barrio, J.L. Tamarit, I.S. Titov, M. Acet, A. Bhattacharyya, S. Majumdar, Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. Nat. Commun. 2, 595 (2011)

    Article  CAS  Google Scholar 

  90. 90.

    L. Manosa, E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.-L. Tamarit, B. Emre, S. Yuce, S. Fabbrici, F. Albertini, Barocaloric effect in metamagnetic shape memory alloys. Phys. Stat. Sol. B 251, 2114 (2014)

    CAS  Article  Google Scholar 

  91. 91.

    X.J. He, K. Xu, S.X. Wei, Y.L. Zhang, Z. Li, C. Jing, Barocaloric effect associated with magneto-structural transformation studied by an effectively indirect method for the Ni58.3Mn17.1Ga24.6 Heusler alloy. J. Mater. Sci. 52, 2915 (2017)

    CAS  Article  Google Scholar 

  92. 92.

    Z. Wei, Y. Shen, Z. Zhang, J. Guo, B. Li, E. Liu, Z. Zhang, J. Liu, Low-pressure-induced giant barocaloric effect in an all-d-metal Heusler Ni35.5Co14.5Mn35Ti15 magnetic shape memory alloy. APL Mater. 8, 051101 (2020)

    CAS  Article  Google Scholar 

  93. 93.

    X. He, S. Wei, Y. Kang, Y. Zhang, Y. Cao, K. Xu, Z. Li, C. Jing, Enhanced barocaloric effect produced by hydrostatic pressure-induced martensitic transformation for Ni44.6Co5.5Mn35.5In14.4 Heusler alloy. Scr. Mater. 145, 58 (2018)

    CAS  Article  Google Scholar 

  94. 94.

    X. He, Y. Kang, S. Wei, Y. Zhang, Y. Cao, K. Xu, Z. Li, C. Jing, Z. Li, A large barocaloric effect and its reversible behavior with an enhanced relative volume change for Ni42.3Co7.9Mn38.8Sn11 Heusler alloy. J. Alloys Compd. 741, 821 (2018)

    CAS  Article  Google Scholar 

  95. 95.

    T. Samanta, P. Lloveras, A.U. Saleheen, D. Lepkowski, E. Kramer, I. Dubenko, P. Adams, D. Young, M. Barrio, J.-L. Tamarit, N. Ali, S. Stadler, Barocaloric and magnetocaloric effects in (MnNiSi)1–x(FeCoGe)x. Appl. Phys. Lett. 112, 021907 (2018)

    Article  CAS  Google Scholar 

  96. 96.

    I.N. Flerov, M.V. Gorev, A.V. Kartashev, E.I. Pogoreltsev, N.M. Laptash, Heat capacity, thermal expansion and barocaloric effect in fluoride K2TaF7. J. Mater. Sci. 54, 1573 (2019)

    Article  CAS  Google Scholar 

  97. 97.

    E. Stern-Taulats, P. Lloveras, M. Barrio, E. Defay, M. Egilmez, A. Planes, J.-L. Tamarit, L. Manosa, N.D. Mathur, X. Moya, Inverse barocaloric effects in ferroelectric BaTiO3 ceramics. APL Mater. 4, 091102 (2016)

    Article  CAS  Google Scholar 

  98. 98.

    M.V. Gorev, E.A. Mikhaleva, I.N. Flerov, E.V. Bogdanov, Conventional and inverse barocaloric effects in ferroelectric NH4HSO4. J. Alloys Compd. 806, 1047 (2019)

    CAS  Article  Google Scholar 

  99. 99.

    P. von Ranke, B. Alho, P. Ribeiro, First indirect experimental evidence and theoretical discussion of giant refrigeration capacity through the reversible pressure induced spin-crossover phase transition. J. Alloys Compd. 749, 556 (2018)

    Article  CAS  Google Scholar 

  100. 100.

    P.J. von Ranke, B.P. Alho, R.M. Ribas, E.P. Nobrega, A. Caldas, V.S.R. de Sousa, M.V. Colaco, L.F. Marques, D.L. Rocco, P.O. Ribeiro, Colossal refrigerant capacity in [Fe (hyptrz)3]A2·H2O around the freezing temperature of water. Phys. Rev. B 98, 224408 (2018)

    Article  Google Scholar 

  101. 101.

    P. von Ranke, B. Alho, E. Nobrega, A. Caldas, V. de Sousa, M. Colaco, L.F. Marques, G.M. Rocha, D.L. Rocco, P. Ribeiro, The refrigerant capacity in spin-crossover materials: application to [Fe(phen)2(NCS)2]. J. Magn. Magn. Mater. 489, 165421 (2019)

    Article  CAS  Google Scholar 

  102. 102.

    J.-J. Lee, H.-S. Sheu, C.-R. Lee, J.-M. Chen, J.-F. Lee, C.-C. Wang, C.-H. Huang, Y. Wang, X-ray absorption spectroscopic studies on light-induced excited spin state trapping of an Fe(II) complex. J. Am. Chem. Soc. 122, 5742 (2000)

    CAS  Article  Google Scholar 

  103. 103.

    S. Patel, A. Chauhan, R. Vaish, P. Thomas, Elastocaloric and barocaloric effects in polyvinylidene di-fluoride-based polymers. Appl. Phys. Lett. 108, 072903 (2016)

    Article  CAS  Google Scholar 

  104. 104.

    E. Usuda, N. Bom, A. Carvalho, Large barocaloric effects at low pressures in natural rubber. Eur. Polym. J. 92, 287 (2017)

    CAS  Article  Google Scholar 

  105. 105.

    A. Carvalho, W. Imamura, E. Usuda, N. Bom, Giant room-temperature barocaloric effects in PDMS rubber at low pressures. Eur. Polym. J. 99, 212 (2018)

    CAS  Article  Google Scholar 

  106. 106.

    E.O. Usuda, W. Imamura, N.M. Bom, L.S. Paixao, A.M.G. Carvalho, Giant reversible barocaloric effects in nitrile butadiene rubber around room temperature. ACS Appl. Polym. Mater. 1, 1991 (2019)

    CAS  Article  Google Scholar 

  107. 107.

    W. Imamura, E.O. Usuda, L.S. Paixao, N.M. Bom, A.M. Gomes, A.M.G. Carvalho, Supergiant barocaloric effects in acetoxy silicone rubber over a wide temperature range: great potential for solid-state cooling. Chin. J. Polym. Sci. 38, 999 (2020)

    CAS  Article  Google Scholar 

  108. 108.

    E. Stern-Taulats, A. D’Ammaro, A. Avramenko, A. Robinson and X. Moya, First steps towards barocaloric refrigeration, Thermag VIII, 8th IIR, IIF International Conference on Caloric Cooling, International Institute of Refrigeration (2018)

  109. 109.

    X. Moya and W.J. Averdieck, Barocal Ltd. https://www.barocal.com. Accessed Oct 2020

  110. 110.

    W. Gao, R. Brennan, Y. Hu, M. Wuttig, G. Yuan, E. Quandt, S. Ren, Mater energy transduction ferroic materials. Mater. Today 21, 771 (2018)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the MINECO project FIS2017-82625-P from the spanish government and the DGU project 2017SGR-42 from the catalan government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pol Lloveras.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lloveras, P., Tamarit, JL. Advances and obstacles in pressure-driven solid-state cooling: A review of barocaloric materials. MRS Energy & Sustainability (2021). https://doi.org/10.1557/s43581-020-00002-4

Download citation

Keywords

  • calorimetry
  • phase transformation
  • thermal conductivity