Skip to main content
Log in

Effect of nitrogen sputtering pressure on the electronic properties of LiPON solid-state electrolyte

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

This study focuses on optimizing the sputtering deposition parameters to grow a LiPON solid-state electrolyte. Specifically, this study examines the impact of nitrogen deposition pressure on the electronic properties of LiPON solid-state electrolytes. Through a combination of scanning electron microscope analysis, X-ray diffraction studies, and chemical spectroscopy techniques, the study found that high nitrogen deposition pressure (20 mTorr) results in the formation of a discharge space with high-species concentration that reduces the mean free path of the ejected Li3PO4 target atoms. This leads to the growth of low-thickness films (\(t=107 nm\)) that lack nitrogen content and have a high-energy bandgap (\({E}_{g}=4.69 eV\)). On the other hand, low nitrogen deposition pressure (5 mTorr) results in the formation of a discharge space with low-species concentration that allows for the growth of thicker sputtered films (\(t=315 nm\)) with the correct stoichiometry of the LiPON phase. This leads to a lower energy bandgap (\({E}_{g}=4.51 eV\)).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. A. Manthiram, Nat. Commun. 11, 1550 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J.D. LaCoste, A. Zakutayev, L. Fei, J. Phys. Chem. C 125(7), 3651–3667 (2021)

    Article  CAS  Google Scholar 

  3. Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, B. Li, J. Energy Chem. 59, 83–99 (2021)

    Article  CAS  Google Scholar 

  4. M. Nagao, A. Hayashi, M. Tatsumisago, Electrochem. Commun. 22, 177–180 (2012)

    Article  CAS  Google Scholar 

  5. Z.A. Grady, C.J. Wilkinson, C.A. Randall, J.C. Mauro, Front. Energy Res. 8, 1–23 (2020)

    Article  Google Scholar 

  6. A.C. Kozen, A.J. Pearse, C. Lin, M. Noked, G.W. Rubloff, Chem. Mater. 27, 5324–5331 (2015)

    Article  CAS  Google Scholar 

  7. P. López-Aranguren, M. Reynaud, P. Głuchowski, A. Bustinza, M. Galceran, J.M. López del Amo, M. Armand, M. Casas-Cabanas, ACS Energy Lett. 6, 445–450 (2021)

    Article  Google Scholar 

  8. J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, Solid State Ionics 53–56, 647–654 (1992)

    Article  Google Scholar 

  9. D. Cheng, T. Wynn, B. Lu, M. Marple, B. Han, R. Shimizu, B. Sreenarayanan, J. Bickel, P. Hosemann, Y. Yang, H. Nguyen, W. Li, G. Zhu, M. Zhang, Y. Shirley Meng, Nat. Nanotechnol. 18(12), 1448–1455 (2023)

    Article  CAS  PubMed  Google Scholar 

  10. C.S. Nimisha, K.Y. Rao, G. Venkatesh, G.M. Rao, N. Munichandraiah, Thin Solid Films 519(10), 3401–3406 (2011)

    Article  CAS  Google Scholar 

  11. Y. Ma, L. Li, J. Qian, W. Qu, R. Luo, F. Wu, Energy Storage Mater. 39, 203–224 (2021)

    Article  Google Scholar 

  12. A.-L. Thomanna, A. Caillard, M. Razab, M. El Mokha, P.A. Cormiera, S. Konstantinidisb, Surf. Coat. Technol. 377, 124887 (2019)

    Article  Google Scholar 

  13. Y. Yang, X. Zheng, H. Cao, C. Zhao, X. Lin, P. Ning, Y. Zhang, W. Jin, Z. Sun, ACS Sustain. Chem. Eng. 5(11), 9972–9980 (2017)

    Article  CAS  Google Scholar 

  14. R.M. Ugalde-Vázquez, F. Ambriz-Vargas, F. Morales-Morales, N. Hernández-Sebastián, A. Benítez-Lara, R. Cabrera-Sierra, C. Gomez-Yañez, J. Eur. Ceram. 43(2), 407–418 (2023)

    Article  Google Scholar 

  15. Z. Hu, D. Li, K. Xie, Bull. Mater. Sci. 31(4), 681–686 (2008)

    Article  CAS  Google Scholar 

  16. M.A.C. Solano, M. Dussauze, P. Vinatier, L. Croguennec, E.I. Kamitsos, R. Hausbrand, W. Jaegermann, Ionics 22, 471–481 (2016)

    Article  Google Scholar 

  17. I. Madinabeitia, J. Rikarte, A. Etxebarria, G. Baraldi, F.J. Fernández-Carretero, I. Garbayo, R. Cid, A. García-Luis, M.Á. Muñoz-Márquez, ACS Appl. Energy Mater. 5(10), 12120–12131 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S.P. Pavunny, R. Thomas, A. Kumar, E. Fachini, R.S. Katiyar, J. Appl. Phys. 111, 044106 (2012)

    Article  Google Scholar 

  19. S. Iida, M. Terashima, K. Mamiya, H. Chan, S. Sasaki, A. Ono, T. Kimoto, T. Miyayama, J. Vac. Sci. Technol. B: Nanotechnol. Microelectron. 39(4), 044001 (2021)

    Article  CAS  Google Scholar 

  20. G. Cherkashinin, Z. Yu, R. Eilhardt, L. Alff, W. Jaegermann, Adv. Mater. Interfaces 7, 2000276 (2020)

    Article  CAS  Google Scholar 

  21. S. Liu, P. Yan, H. Li, X. Zhang, W. Sun, One-step microwave synthesis of micro/nanoscale LiFePO4/graphene cathode with high performance for lithium-ion batteries. Front. Chem. 8, 104 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  22. R. Liu, J. Chen, Z. Li, Q. Ding, X. An, Y. Pan, Z. Zheng, M. Yang, D. Fu, Preparation of LiFePO4/C cathode materials via a green synthesis route for lithium-ion battery applications. Materials 11, 2251 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support from Mexico's National Council of Humanities, Sciences and Technologies (CONAHCYT).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. All authors read, reviewed, and approved the final version of the manuscript.

Corresponding author

Correspondence to Fabian Ambriz-Vargas.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This study does not violate any ethical rules.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 878 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trujillo-Martinez, J.F., Ambriz-Vargas, F., Hernández-Sebastián, N. et al. Effect of nitrogen sputtering pressure on the electronic properties of LiPON solid-state electrolyte. MRS Advances 9, 344–349 (2024). https://doi.org/10.1557/s43580-024-00891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-024-00891-4

Navigation