Abstract
This study focuses on optimizing the sputtering deposition parameters to grow a LiPON solid-state electrolyte. Specifically, this study examines the impact of nitrogen deposition pressure on the electronic properties of LiPON solid-state electrolytes. Through a combination of scanning electron microscope analysis, X-ray diffraction studies, and chemical spectroscopy techniques, the study found that high nitrogen deposition pressure (20 mTorr) results in the formation of a discharge space with high-species concentration that reduces the mean free path of the ejected Li3PO4 target atoms. This leads to the growth of low-thickness films (\(t=107 nm\)) that lack nitrogen content and have a high-energy bandgap (\({E}_{g}=4.69 eV\)). On the other hand, low nitrogen deposition pressure (5 mTorr) results in the formation of a discharge space with low-species concentration that allows for the growth of thicker sputtered films (\(t=315 nm\)) with the correct stoichiometry of the LiPON phase. This leads to a lower energy bandgap (\({E}_{g}=4.51 eV\)).
Graphical abstract
Similar content being viewed by others
Data availability
The authors declare that the data supporting the findings of this study are available within the article.
References
A. Manthiram, Nat. Commun. 11, 1550 (2020)
J.D. LaCoste, A. Zakutayev, L. Fei, J. Phys. Chem. C 125(7), 3651–3667 (2021)
Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, B. Li, J. Energy Chem. 59, 83–99 (2021)
M. Nagao, A. Hayashi, M. Tatsumisago, Electrochem. Commun. 22, 177–180 (2012)
Z.A. Grady, C.J. Wilkinson, C.A. Randall, J.C. Mauro, Front. Energy Res. 8, 1–23 (2020)
A.C. Kozen, A.J. Pearse, C. Lin, M. Noked, G.W. Rubloff, Chem. Mater. 27, 5324–5331 (2015)
P. López-Aranguren, M. Reynaud, P. Głuchowski, A. Bustinza, M. Galceran, J.M. López del Amo, M. Armand, M. Casas-Cabanas, ACS Energy Lett. 6, 445–450 (2021)
J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, Solid State Ionics 53–56, 647–654 (1992)
D. Cheng, T. Wynn, B. Lu, M. Marple, B. Han, R. Shimizu, B. Sreenarayanan, J. Bickel, P. Hosemann, Y. Yang, H. Nguyen, W. Li, G. Zhu, M. Zhang, Y. Shirley Meng, Nat. Nanotechnol. 18(12), 1448–1455 (2023)
C.S. Nimisha, K.Y. Rao, G. Venkatesh, G.M. Rao, N. Munichandraiah, Thin Solid Films 519(10), 3401–3406 (2011)
Y. Ma, L. Li, J. Qian, W. Qu, R. Luo, F. Wu, Energy Storage Mater. 39, 203–224 (2021)
A.-L. Thomanna, A. Caillard, M. Razab, M. El Mokha, P.A. Cormiera, S. Konstantinidisb, Surf. Coat. Technol. 377, 124887 (2019)
Y. Yang, X. Zheng, H. Cao, C. Zhao, X. Lin, P. Ning, Y. Zhang, W. Jin, Z. Sun, ACS Sustain. Chem. Eng. 5(11), 9972–9980 (2017)
R.M. Ugalde-Vázquez, F. Ambriz-Vargas, F. Morales-Morales, N. Hernández-Sebastián, A. Benítez-Lara, R. Cabrera-Sierra, C. Gomez-Yañez, J. Eur. Ceram. 43(2), 407–418 (2023)
Z. Hu, D. Li, K. Xie, Bull. Mater. Sci. 31(4), 681–686 (2008)
M.A.C. Solano, M. Dussauze, P. Vinatier, L. Croguennec, E.I. Kamitsos, R. Hausbrand, W. Jaegermann, Ionics 22, 471–481 (2016)
I. Madinabeitia, J. Rikarte, A. Etxebarria, G. Baraldi, F.J. Fernández-Carretero, I. Garbayo, R. Cid, A. García-Luis, M.Á. Muñoz-Márquez, ACS Appl. Energy Mater. 5(10), 12120–12131 (2022)
S.P. Pavunny, R. Thomas, A. Kumar, E. Fachini, R.S. Katiyar, J. Appl. Phys. 111, 044106 (2012)
S. Iida, M. Terashima, K. Mamiya, H. Chan, S. Sasaki, A. Ono, T. Kimoto, T. Miyayama, J. Vac. Sci. Technol. B: Nanotechnol. Microelectron. 39(4), 044001 (2021)
G. Cherkashinin, Z. Yu, R. Eilhardt, L. Alff, W. Jaegermann, Adv. Mater. Interfaces 7, 2000276 (2020)
S. Liu, P. Yan, H. Li, X. Zhang, W. Sun, One-step microwave synthesis of micro/nanoscale LiFePO4/graphene cathode with high performance for lithium-ion batteries. Front. Chem. 8, 104 (2020)
R. Liu, J. Chen, Z. Li, Q. Ding, X. An, Y. Pan, Z. Zheng, M. Yang, D. Fu, Preparation of LiFePO4/C cathode materials via a green synthesis route for lithium-ion battery applications. Materials 11, 2251 (2018)
Acknowledgments
The authors wish to acknowledge the financial support from Mexico's National Council of Humanities, Sciences and Technologies (CONAHCYT).
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study's conception and design. All authors read, reviewed, and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Ethical approval
This study does not violate any ethical rules.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Trujillo-Martinez, J.F., Ambriz-Vargas, F., Hernández-Sebastián, N. et al. Effect of nitrogen sputtering pressure on the electronic properties of LiPON solid-state electrolyte. MRS Advances 9, 344–349 (2024). https://doi.org/10.1557/s43580-024-00891-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43580-024-00891-4