Skip to main content
Log in

Properties of AZO films grown by ALD applied as a TCO layer in perovskite solar cells

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In recent years, aluminum-doped zinc oxide (AZO) has attracted much attention due to its high transmittance and low resistivity, which makes it an excellent candidate for various applications in photovoltaic field, photoelectric, and transparent electronic devices. However, producing an AZO film with a desirable electronic property is still a challenge. In this work, we demonstrate that AZO can be successfully deposited by the atomic layer deposition (ALD) technique. The results showed that it is possible to dope ZnO with aluminum through the ALD technique using multiple layers composed of ZnO and Al2O3. Films with transmittance above 80%, optical band gap between 3.3 and 3.8 eV and promising electronic properties were obtained for use as a transparent conductive layer in large-area perovskite solar cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data are included in this article.

References

  1. N. Shah, A.A. Shah, P.K. Leung, S. Khan, K. Sun, X. Zhu, Q. Liao, Processes 2023, 11 (1852)

    Google Scholar 

  2. P. Roy, A. Ghosh, F. Barclay, A. Khare, E. Cuce, Coatings 12, 1089 (2022)

    Article  CAS  Google Scholar 

  3. B. Parida, S. Iniyan, R. Goic, Renew. Sustain. Energy Rev. 15(3), 1625–1636 (2011)

    Article  CAS  Google Scholar 

  4. J. Yan, B.R. Saunders, RSC Adv. 4, 43286–43314 (2014)

    Article  CAS  Google Scholar 

  5. R. Sharif, A. Rehman, H.G. Qutab, H.H. Akhtar, K. Mahmood, S. Afzal, F. Saleem, Nanoscale Adv. 5, 3803–3833 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Liu, V.P. Biju, Y. Qi et al., NPG Asia Mater. 15, 27 (2023). https://doi.org/10.1038/s41427-023-00474-z

    Article  CAS  Google Scholar 

  7. Q. Zhao, R. Wu, Z. Zhang, J. Xiong, Z. He, B. Fan, Z. Dai, B. Yang, X. Xue, P. Cai, S. Zhan, X. Zhang, J. Zhang, Org. Electron. 71, 106–112 (2019). https://doi.org/10.1016/j.orgel.2019.05.019

    Article  CAS  Google Scholar 

  8. W.-H. Zhang, L. Chen, Z.-P. Zou, Z.-A. Nan, J.-L. Shi, Q.-P. Luo, Y. Hui, K.-X. Li, Y.-J. Wang, J.-Z. Zhou, J.-W. Yan, B.-W. Mao, ACS Appl. Mater. Interfaces 14(28), 31911–31919 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. C. Zuo, H.J. Bolink, H. Han, J. Huang, D. Cahen, L. Ding, Adv. Sci. 3, 1500324 (2016)

    Article  Google Scholar 

  10. Y. Zhou, L.M. Herz, A.K.-Y. Jen, M. Saliba, Nat. Energy 7, 794–807 (2022). https://doi.org/10.1038/s41560-022-01096-5

    Article  CAS  Google Scholar 

  11. K. Zhao, J. Xie, Y. Zhao, D. Han, Y. Wang, B. Liu, J. Dong, Nanomaterials 12, 172 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Chavesa, R. Ramosa, E. Martinsa, E.C. Rangela, N.C. Cruza, S.F. Durranta, J.R.R. Bortoletoa, Mater. Res. (2019). https://doi.org/10.1590/1980-5373-MR-2018-0665

    Article  Google Scholar 

  13. N. Van Toan, T.T.K. Tuoi, N. Inomata, M. Toda, T. Ono, Sci. Rep. 11, 1204 (2021). https://doi.org/10.1038/s41598-020-80880-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. H. Li, D. Han, L. Liu, J. Dong, G. Cui, S. Zhang, X. Zhang, Y. Wang, Nanoscale Res. Lett. 12, 223 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Y. Wu, F. Cao, X.H. Ji, J. Mater. Sci. Mater. Electron. 31, 17365 (2020). https://doi.org/10.1007/s10854-020-04292-9

    Article  CAS  Google Scholar 

  16. B. Swatowska, W. Powroźnik, H. Czternastek, G. Lewińska, T. Stapiński, R. Pietruszka, B.S. Witkowski, M. Godlewski, Energies 14, 6271 (2021). https://doi.org/10.3390/en14196271

    Article  CAS  Google Scholar 

  17. B. Macco, W.M.M.E. Kessels, Appl. Phys. Rev. 9, 041313 (2022). https://doi.org/10.1063/5.0116732

    Article  CAS  Google Scholar 

  18. Y. Geng, L. Guo, S.-S. Xu, Q.-Q. Sun, S.-J. Ding, H.-L. Lu, D.W. Zhang, J. Phys. Chem. C 115(25), 12317–12321 (2011)

    Article  CAS  Google Scholar 

  19. S.W. Xue, X.T. Zu, W.G. Zheng, H.X. Deng, X. Xiang, Physica B 381(1–2), 209–213 (2006)

    Article  CAS  Google Scholar 

  20. S.M. George, Chem. Rev. 110, 111–131 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. T.J. Kunene, L.K. Tartibu, K. Ukoba, T.-C. Jen, Mater. Today Proc. 62, S95–S109 (2022)

    Article  Google Scholar 

  22. M. Moret, A. Abou Chaaya, M. Bechelany, P. Miele, Y. Robin, O. Briot, Superlattices Microstruct. 75, 477–484 (2014). https://doi.org/10.1016/j.spmi.2014.07.050

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from BYD Energy Brazil through the PADIS/MCTI program, Project No. 5779/FUNCAMP, FAPESP (São Paulo Research Foundation, Processes 2017/11986-5), Shell, the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation, the Brazilian research funding agencies INCT/INES/CNPq (Grant 465423/ 2014-0), the National Council of Technological and Scientific Development—CNPq (grant 302349/2021-9, 435260/2018-9 and 306297/2017-5), and the Coordination for the Improvement of Higher Education Personnel (CAPES). We would also like to thank the multi-user laboratory of the Gleb Wataghin Physics Institute (LAMULT).

Funding

BYD Energy Brazil PADIS/MCTI: Grant 5779/FUNCAMP; FAPESP: Grant 2017/11986-5; and INCT/INES/CNPq: Grant 465423/ 2014-0.

Author information

Authors and Affiliations

Authors

Contributions

Ana Paula de M. M. Modesto: investigation, data compilation and analysis, methodology, conceptualization, writing- review & editing. Rafael B. Merlo and Diego G. Guzman: data compilation and analysis. T. E. A. Santos, T. A. S. Barros and F.C. Marques: supervision, conceptualization, writing—review & editing, funding acquisition.

Corresponding authors

Correspondence to Ana Paula de Melo Monteiro Modesto or Francisco C. Marques.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo Monteiro Modesto, A.P., Merlo, R.B., Guzman, D.G. et al. Properties of AZO films grown by ALD applied as a TCO layer in perovskite solar cells. MRS Advances (2024). https://doi.org/10.1557/s43580-024-00873-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-024-00873-6

Navigation