Skip to main content
Log in

Investigations of Ag-ZnO nanosheets for improved photocatalytic performance and antimicrobial activity

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

ZnO is promising material for environmental remediation technology. To tune the material properties, Ag was added into the ZnO lattice. Herein, we report the hydrothermal synthesis of Ag-ZnO for its profound photocatalytic and antimicrobial action. The material was characterized with XRD, FESEM, EDX, and FTIR for the study of its crystal structure, morphology, elemental composition, and the availability of functional groups on the surface of the material, respectively. The optical characteristics of Ag-ZnO were investigated using UV–Visible spectroscopy and PL spectroscopy. Efficient photocatalytic degradation was performed by methylene blue. The photocatalytic MB removal was investigated over different pH values, followed by its cyclic stability. Further the material was tested for its antimicrobial activity. The antimicrobial activity was reported for methicillin-resistant staphylococcus aureus (MRSA), B. subtilis, S. aureus, P. aeruginosa, E. coli, S. thyphi, A. flavus, and A. niger. The outcomes suggest that Ag-ZnO can be used for large-scale disinfecting purposes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data will be made available on reasonable request.

References

  1. X. Aihemaiti et al., Enhanced photocatalytic and antibacterial activities of S-scheme SnO2/Red phosphorus photocatalyst under visible light. Chemosphere 296, 134013 (2022). https://doi.org/10.1016/j.chemosphere.2022.134013

    Article  CAS  PubMed  Google Scholar 

  2. M. Kumar, P. Borah, and P. Devi: “Priority and emerging pollutants in water,” In: Inorganic Pollutants in Water, pp. 33–49 (2020). doi: https://doi.org/10.1016/b978-0-12-818965-8.00003-2

  3. M. D. Khan, M. ul H. Farooq, F. Iqra, A. Zulfiqar, and M. Rizwan: Designing of visible light active composites of CuS and ZnO for improved photocatalytic performance under solar light irradiation. Optik (Stuttg), vol. 271, p. 170147 (2022). doi: https://doi.org/10.1016/j.ijleo.2022.170147

  4. M.A. Al-Nuaim, A.A. Alwasiti, Z.Y. Shnain, The photocatalytic process in the treatment of polluted water. Chem. Pap. 77(2), 677–701 (2023). https://doi.org/10.1007/s11696-022-02468-7

    Article  CAS  Google Scholar 

  5. I. Fareed, M. D. Khan, D. Rehman, M. ul Hassan Farooq, and F. K. Butt: 3D graphene for removal of inorganic pollutants (2023), pp. 169–187. doi: https://doi.org/10.1007/978-3-031-36249-1_10

  6. A.S. Alkorbi et al., Samarium vanadate affixed sulfur self doped g-C3N4 heterojunction; photocatalytic, photoelectrocatalytic hydrogen evolution and dye degradation. Int. J. Hydrogen Energy 47(26), 12988–13003 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.071

    Article  CAS  Google Scholar 

  7. S. Dong et al., Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv. 5(19), 14610–14630 (2015). https://doi.org/10.1039/C4RA13734E

    Article  CAS  Google Scholar 

  8. Z. Guo et al., Heterojunction interface of zinc oxide and zinc sulfide promoting reactive molecules activation and carrier separation toward efficient photocatalysis. J. Colloid Interface Sci. 588, 826–837 (2021). https://doi.org/10.1016/j.jcis.2020.11.118

    Article  CAS  PubMed  Google Scholar 

  9. I. Fareed et al., Comprehensive investigations into the synergy of S-scheme heterojunction between nitrogen-doped ZnO nano-rods and g-C3N4 nanosheets for improved photocatalytic degradation. Mater. Chem. Phys. 316, 129062 (2024). https://doi.org/10.1016/j.matchemphys.2024.129062

    Article  CAS  Google Scholar 

  10. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605, 2–19 (2016). https://doi.org/10.1016/j.tsf.2015.12.064

    Article  CAS  Google Scholar 

  11. S. Em et al., Uncovering the role of surface-attached Ag nanoparticles in photodegradation improvement of rhodamine B by ZnO-Ag nanorods. Nanomaterials 12(16), 2882 (2022). https://doi.org/10.3390/NANO12162882/S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Shahid, S.A. Khan, W. Ahmad, U. Fatima, S. Knawal, Size-Dependent bacterial growth inhibition and antibacterial activity of ag-doped ZnO nanoparticles under different atmospheric conditions. Indian J. Pharm. Sci. 80(1), 173–180 (2018). https://doi.org/10.4172/pharmaceutical-sciences.1000342

    Article  CAS  Google Scholar 

  13. D. Ciumac, H. Gong, X. Hu, J.R. Lu, Membrane targeting cationic antimicrobial peptides. J. Colloid Interface Sci. 537, 163–185 (2019). https://doi.org/10.1016/j.jcis.2018.10.103

    Article  CAS  PubMed  Google Scholar 

  14. H.H. Kong, Skin microbiome: genomics-based insights into the diversity and role of skin microbes. Trends Mol. Med. 17(6), 320–328 (2011). https://doi.org/10.1016/j.molmed.2011.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  15. S. Sasi et al., Green synthesis of ZnO nanoparticles with enhanced photocatalytic and antibacterial activity. J. Alloys Compd. 924, 166431 (2022). https://doi.org/10.1016/j.jallcom.2022.166431

    Article  CAS  Google Scholar 

  16. M. Vaseem, A. Umar, and Y. Hahn, ZnO nanoparticles: growth, properties, and applications, vol. 5. 2010. http://www.researchgate.net/publication/225076578_ZnO_Nanoparticles_Growth_Properties_and_Applications/file/79e414fd3251942ea8.pdf

  17. Y. Rilda et al., Biosynthesis of Ag-doped ZnO nanorods using template Bacillus sp. and polyethylene glycol via sol-gel-hydrothermal methods for antifungal application. S. Afr. J. Chem. Eng. 47, 91–97 (2024). https://doi.org/10.1016/J.SAJCE.2023.10.013

    Article  Google Scholar 

  18. Ö.A. Yildirim, H.E. Unalan, C. Durucan, Highly efficient room temperature synthesis of silver-doped zinc oxide (ZnO: Ag) nanoparticles: Structural, optical, and photocatalytic properties. J. Am. Ceram. Soc. 96(3), 766–773 (2013). https://doi.org/10.1111/jace.12218

    Article  CAS  Google Scholar 

  19. T.N. Ravishankar et al., Comparison of the photocatalytic degradation of trypan blue by undoped and silver-doped zinc oxide nanoparticles. Mater. Sci. Semicond. Process. 26(1), 7–17 (2014). https://doi.org/10.1016/j.mssp.2014.03.027

    Article  CAS  Google Scholar 

  20. A. Roy, O. Bulut, S. Some, A.K. Mandal, M.D. Yilmaz, Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 9(5), 2673–2702 (2019). https://doi.org/10.1039/c8ra08982e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D. Shen et al., Synthesized Z-scheme photocatalyst ZnO/g-C3N4for enhanced photocatalytic reduction of CO2. New J. Chem. 44(38), 16390–16399 (2020). https://doi.org/10.1039/d0nj02270e

    Article  CAS  Google Scholar 

  22. Q.T.H. Ta, G. Namgung, J.-S. Noh, Facile synthesis of porous metal-doped ZnO/g-C3N4 composites for highly efficient photocatalysts. J Photochem Photobiol A Chem 368, 110–119 (2019). https://doi.org/10.1016/j.jphotochem.2018.09.049

    Article  CAS  Google Scholar 

  23. M. Danish, M. Muneer, Facile synthesis of highly efficient Co@ZnSQDs/g-C3N4/MWCNT nanocomposites and their photocatalytic potential for the degradation of RhB dye: efficiency, degradation kinetics, and mechanism pathway. Ceram. Int. 47(9), 13043–13056 (2021). https://doi.org/10.1016/j.ceramint.2021.01.168

    Article  CAS  Google Scholar 

  24. N.T.T. Truc et al., The advanced photocatalytic degradation of atrazine by direct Z-scheme Cu doped ZnO/g-C3N4. Appl. Surf. Sci. 489, 875–882 (2019). https://doi.org/10.1016/j.apsusc.2019.05.360

    Article  CAS  Google Scholar 

  25. S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, B. Sreedhar, Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis. Nanoscale 6(9), 4830–4842 (2014). https://doi.org/10.1039/c3nr05271k

    Article  CAS  PubMed  Google Scholar 

  26. P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.V.N. Vo, M. Naushad, ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: a review. Environ. Chem. Lett. 20(2), 1047–1081 (2022). https://doi.org/10.1007/s10311-021-01361-1

    Article  CAS  Google Scholar 

  27. K. Sowri Babu, A. Ramachandra Reddy, C. Sujatha, K. Venugopal Reddy, A.N. Mallika, Synthesis and optical characterization of porous ZnO. J. Adv. Ceram. 2(3), 260–265 (2013). https://doi.org/10.1007/s40145-013-0069-6

    Article  CAS  Google Scholar 

  28. S. Gea et al., Facile synthesis of ZnO–Ag nanocomposite supported by graphene oxide with stabilised band-gap and wider visible-light region for photocatalyst application. J. Market. Res. 19, 2730–2741 (2022). https://doi.org/10.1016/j.jmrt.2022.05.184

    Article  CAS  Google Scholar 

  29. J. Swain et al., Photocatalytic dye degradation by BaTiO3/zeolitic imidazolate framework composite. J. Alloys Compd. 965, 171438 (2023). https://doi.org/10.1016/j.jallcom.2023.171438

    Article  CAS  Google Scholar 

Download references

Funding

We are thankful to Higher Education Commission (HEC), Pakistan for providing financial support for this research work under National Research Project for Universities No. 8421/Punjab/NRPU/R&D/HEC/2017.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Masood ul Hassan Farooq.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts of interest.

Ethical approval

This article does not contain any studies involving human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1379 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z., Fatima, Z., Fareed, I. et al. Investigations of Ag-ZnO nanosheets for improved photocatalytic performance and antimicrobial activity. MRS Advances (2024). https://doi.org/10.1557/s43580-024-00869-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-024-00869-2

Navigation