Skip to main content
Log in

A new visible-light-responsive carbon–nitrogen-co-doped zinc oxide photocatalysts: Applications on dye remediation

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

C–N-co-doped ZnO was successfully developed as a visible-light photocatalyst by incorporating carbon (C) and nitrogen (N) into the ZnO lattice using a two-step sol–gel and physical grinding method. Characterizations included DRS, FTIR, XRD, SEM, XPS, and TGA all confirming successful doping. The DRS analysis confirmed the shift in photoresponse from the UV region to the visible-light region. The XRD analysis confirmed the hexagonal wurtzite structure of ZnO, with slight redshifts in 2θ values for the 5% C–N–ZnO NPs. SEM images showed particles of varying sizes while the XPS analysis confirmed the presence of C, N, Zn, and O. The C–N-co-doped ZnO exhibited enhanced photocatalytic activity, decomposing 91% of methylene blue in 140 min under visible light. The degradation followed a pseudo-second-order kinetic reaction, with decomposition rates increasing with higher photocatalyst quantities and decreasing with higher dye concentrations.

Graphical abstract

Uniform and stable C–N-co-doped nanocomposites were prepared and their excellent photocatalytic dye degradation under visible-light irradiation was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

This manuscript contains all of the data generated or analyzed during this research.

References

  1. K. Ahmad, H. Ghatak, S. Ahuja, Photocatalytic technology: a review of environmental protection and renewable energy application for sustainable development. Environ. Technol. Innov. 19, 100893 (2020). https://doi.org/10.1016/j.eti.2020.100893

    Article  Google Scholar 

  2. N. Serpone, A.V. Emeline, Semiconductor photocatalysis—past, present, and future outlook. J. Phys. Chem. Lett. 3(5), 673–677 (2012). https://doi.org/10.1021/jz300071j

    Article  CAS  PubMed  Google Scholar 

  3. F. Imtiaz, J. Rashid, M. Xu, Semiconductor nanocomposites for visible light photocatalysis of water pollutants, in Concepts of Semiconductor Photocatalysis. ed. by M. Rahman, A. Khan, A. Asiri, I. Inamuddin (IntechOpen, Rijeka, 2019). https://doi.org/10.5772/intechopen.86542

    Chapter  Google Scholar 

  4. A.I. Sterhov, I.Y. Loshkarev, Determination of the proportion of natural light in solar radiation using the method of conversion of lighting units into energy. J. Phys.: Conf. Ser. (2019). https://doi.org/10.1088/1742-6596/1353/1/012002

    Article  Google Scholar 

  5. J. Xu, W. Wang, S. Sun, L. Wang, Enhancing visible-light-induced photocatalytic activity by coupling with wide-band-gap semiconductor: a case study on Bi2WO6/TiO2. Appl. Catal. B (2012). https://doi.org/10.1016/j.apcatb.2011.09.025

    Article  Google Scholar 

  6. P. Cheng, Y. Yang, Narrowing the band gap: the key to high-performance organic photovoltaics. Acc. Chem. Res. 53(6), 1218–1228 (2020). https://doi.org/10.1021/acs.accounts.0c00157

    Article  CAS  PubMed  Google Scholar 

  7. R. Medhi, M.D. Marquez, T.R. Lee, Visible-light-active doped metal oxide nanoparticles: review of their synthesis, properties, and applications. ACS Appl. Nano Mater. 3(7), 6156–6185 (2020). https://doi.org/10.1021/acsanm.0c01035

    Article  CAS  Google Scholar 

  8. X. Zhang et al., Carbon-doped ZnO nanostructures: facile synthesis and visible light photocatalytic applications. J. Phys. Chem. C 119(35), 20544–20554 (2015). https://doi.org/10.1021/acs.jpcc.5b07116

    Article  CAS  Google Scholar 

  9. M. Chiesa, S. Livraghi, M.C. Paganini, E. Salvadori, E. Giamello, Nitrogen-doped semiconducting oxides. Implications on photochemical, photocatalytic and electronic properties derived from EPR spectroscopy. Chem. Sci. 11(26), 6623–6641 (2020). https://doi.org/10.1039/D0SC02876B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. Lynch, C. Giannini, J. Cooper, A. Loiudice, I. Sharp, R. Buonsanti, Substitutional or interstitial site-selective nitrogen doping in TiO2 nanostructures. J. Phys. Chem. C 119, 7443–7452 (2015). https://doi.org/10.1021/jp512775s

    Article  CAS  Google Scholar 

  11. M. Zheng, J. Wu, One-step synthesis of nitrogen-doped ZnO nanocrystallites and their properties. Appl. Surf. Sci. 255, 5656–5661 (2009). https://doi.org/10.1016/j.apsusc.2008.10.091

    Article  CAS  Google Scholar 

  12. L. Sun, H. He, L. Hu, Z. Ye, Evidence for the carbon-nitrogen complex in ZnO nanostructures with very high nitrogen doping. Phys. Chem. Chem. Phys. 15(5), 1369–1373 (2013). https://doi.org/10.1039/c2cp43657d

    Article  CAS  PubMed  Google Scholar 

  13. A. Khan, M. Danish, U. Alam, S. Zafar, M. Muneer, Facile synthesis of a Z-scheme ZnIn2S4/MoO3 heterojunction with enhanced photocatalytic activity under visible light irradiation. ACS Omega 5(14), 8188–8199 (2020). https://doi.org/10.1021/acsomega.0c00446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D.G. Ayu et al., Photocatalytic degradation of methylene blue using N-doped ZnO/carbon dot (N-ZnO/CD) nanocomposites derived from organic soybean. ACS Omega 8(17), 14965–14984 (2023). https://doi.org/10.1021/acsomega.2c07546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J. Li, N. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 5(3), 1360–1384 (2015). https://doi.org/10.1039/C4CY00974F

    Article  CAS  Google Scholar 

  16. F. Zou, J. Hu, W. Miao, Y. Shen, J. Ding, X. Jing, Synthesis and characterization of enhanced photocatalytic activity with Li+-doping nanosized TiO2 catalyst. ACS Omega 5(44), 28510–28516 (2020). https://doi.org/10.1021/acsomega.0c03054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A.S. Alshammari et al., Visible-light photocatalysis on C-doped ZnO derived from polymer-assisted pyrolysis. RSC Adv. 5(35), 27690–27698 (2015). https://doi.org/10.1039/c4ra17227b

    Article  CAS  Google Scholar 

  18. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605, 2–19 (2016). https://doi.org/10.1016/j.tsf.2015.12.064

    Article  CAS  Google Scholar 

  19. P. Kumari, K.P. Misra, S. Chattopadhyay, S. Samanta, A brief review on transition metal ion doped ZnO nanoparticles and its optoelectronic applications. Mater. Today: Proc. 43, 3297–3302 (2021). https://doi.org/10.1016/j.matpr.2021.02.299

    Article  CAS  Google Scholar 

  20. Z. Hammami, C. Bilel, A. Othmani, R. Chaabane, R. Schneider, Manganese doping effect on ZnO photocatalytic and electric properties. S. Afr. J. Chem. 78, 27–35 (2024)

    CAS  Google Scholar 

  21. I. Aadnan, O. Zegaoui, A. El Mragui, I. Daou, H. Moussout, J.C.G. da Silva, Structural, optical and photocatalytic properties of Mn doped ZnO nanoparticles used as photocatalysts for azo-dye degradation under visible light. Catalysts (2022). https://doi.org/10.3390/catal12111382

    Article  Google Scholar 

  22. X. Zhang et al., Carbon-doped ZnO nanostructures: facile synthesis and visible light photocatalytic applications. J. Phys. Chem. C 119, 20544–20554 (2015). https://doi.org/10.1021/acs.jpcc.5b07116

    Article  CAS  Google Scholar 

  23. A.M. Ferrari-Lima, R.P. de Souza, S.S. Mendes, R.G. Marques, M.L. Gimenes, N.R.C. Fernandes-Machado, Photodegradation of benzene, toluene and xylenes under visible light applying N-doped mixed TiO2 and ZnO catalysts. Catal. Today 241, 40–46 (2015). https://doi.org/10.1016/j.cattod.2014.03.042

    Article  CAS  Google Scholar 

  24. C. Wu, Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation. Appl. Surf. Sci. 319, 237–243 (2014). https://doi.org/10.1016/j.apsusc.2014.04.217

    Article  CAS  Google Scholar 

  25. J.J. Macías-Sánchez et al., Synthesis of nitrogen-doped ZnO by sol–gel method: characterization and its application on visible photocatalytic degradation of 2,4-D and picloram herbicides. Photochem. Photobiol. Sci. 14(3), 536–542 (2015). https://doi.org/10.1039/C4PP00273C

    Article  CAS  PubMed  Google Scholar 

  26. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605, 2–19 (2016). https://doi.org/10.1016/j.tsf.2015.12.064

    Article  CAS  Google Scholar 

  27. A. Hassan, A. Jalil, S.Z. Ilyas, M.F. Iqbal, S.Z. Ali Shah, Y. Baqir, Green-route synthesis and ab-initio studies of a highly efficient nano photocatalyst:Ce/zinc-oxide nanopetals. Heliyon 10(3), e25581 (2024). https://doi.org/10.1016/j.heliyon.2024.e25581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. X. Qing, C. Zhang, J. Gong, S. Chen, Ab initio study of photoelectric properties in ZnO transparent conductive oxide. Vacuum 191(June), 110391 (2021). https://doi.org/10.1016/j.vacuum.2021.110391

    Article  CAS  Google Scholar 

  29. F. Gallino, C. Di Valentin, G. Pacchioni, M. Chiesa, E. Giamello, Nitrogen impurity states in polycrystalline ZnO. A combined EPR and theoretical study. J. Mater. Chem. 20(4), 689–697 (2010). https://doi.org/10.1039/B915578C

    Article  CAS  Google Scholar 

  30. Y.H. Lu, S.P. Russo, Y.P. Feng, Effect of nitrogen and intrinsic defect complexes on conversion efficiency of ZnO for hydrogen generation from water. Phys. Chem. Chem. Phys. 13(35), 15973–15976 (2011). https://doi.org/10.1039/C1CP20908F

    Article  CAS  PubMed  Google Scholar 

  31. H. Pan et al., Room-temperature ferromagnetism in carbon-doped ZnO. Phys. Rev. Lett. 99(12), 127201 (2007). https://doi.org/10.1103/PhysRevLett.99.127201

    Article  CAS  PubMed  Google Scholar 

  32. S. Liu, C. Li, J. Yu, Q. Xiang, Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 13(7), 2533–2541 (2011). https://doi.org/10.1039/C0CE00295J

    Article  CAS  Google Scholar 

  33. F. Paraguay-Delgado, L.A. Hermida-Montero, J.E. Morales-Mendoza, Z. Durán-Barradas, A.I. Mtz-Enriquez, N. Pariona, Photocatalytic properties of Cu-containing ZnO nanoparticles and their antifungal activity against agriculture-pathogenic fungus. RSC Adv. 12(16), 9898–9908 (2022). https://doi.org/10.1039/D2RA00863G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. C.-W. Lin et al., Interactions between liquid ammonia and graphitic materials. RSC Appl. Interfaces (2024). https://doi.org/10.1039/D3LF00194F

    Article  Google Scholar 

  35. Z. Liu, D. Yao, F. Wu, Promotion of Cu−SSZ-13 on urea decomposition. Energy Fuels 35(9), 8163–8172 (2021). https://doi.org/10.1021/acs.energyfuels.0c04347

    Article  CAS  Google Scholar 

  36. Y. Shaban, N.A. Alharbi, Sunlight-mediated photocatalytic removal of phenanthrene from wastewater using carbon-doped zinc oxide (C-ZnO) nanoparticles. Environ. Sci. Pollut. Res. 29(31), 47818–47831 (2022). https://doi.org/10.1007/s11356-022-19214-x

    Article  CAS  Google Scholar 

  37. I. Groeneveld, M. Kanelli, F. Ariese, M.R. van Bommel, Parameters that affect the photodegradation of dyes and pigments in solution and on substrate—an overview. Dyes Pigm. 210, 110999 (2023). https://doi.org/10.1016/j.dyepig.2022.110999

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Much gratitude to the Bangladesh Council of Scientific and Industrial Research for the XRD, DRS and FE-SEM study of the samples.

Funding

This research was funded by The Queen Elizabeth Commonwealth Scholarship research grants and Grant for Advance Research in Education (GARE), Project ID: PS2019909 from the Ministry of Education, Government of the People’s Republic of Bangladesh.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—Abdulla-Al-Mamun M; methodology—Shikuku R O; formal analysis—Shikuku R O; investigation—Shikuku R O; resources—Abdulla-Al-Mamun M; writing—original draft preparation—Shikuku R O; writing—review and editing—Abdulla-Al-Mamun M; visualization—Shikuku R O; supervision—Abdulla-Al-Mamun M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Md. Abdulla-Al-Mamun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 566 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shikuku, R., Abdulla-Al-Mamun, M. A new visible-light-responsive carbon–nitrogen-co-doped zinc oxide photocatalysts: Applications on dye remediation. MRS Advances (2024). https://doi.org/10.1557/s43580-024-00857-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-024-00857-6

Navigation