Skip to main content
Log in

Interfaces and soft confinement promote crystallization in polymer nanodroplets

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript


We employ all-atom molecular dynamics simulations to study polyethylene (PE) crystallization under soft nanoconfinement in water. The hydrophobic PE phase separates from water and forms nanodroplets above the crystal melting temperature. By cooling the PE nanodroplets of different sizes in simulations, we show that the polymer-water interface can induce partial orientational order to polymer segments in the precursor state and enhance crystal nucleation. Curvature imposed by nanoconfinement, however, hinders PE crystallization, resulting in rare occurrences of crystalline atoms at highly curved droplet centers. We observe crystals nucleate at the PE-water interface and grow inward. For large droplets, the growth of multiple nuclei formed at the droplet interfaces leads to polycrystalline droplets after crystallization. Sufficiently small droplets can deform and elongate to accommodate the formation of large single crystallites and high crystallinity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its supplementary material.


  1. I.M. Ward, Optical and mechanical anisotropy in crystalline polymers. Proc. Phys. Soc. 80(5), 1176 (1962).

    Article  CAS  Google Scholar 

  2. K. Gu, C.R. Snyder, J. Onorato, C.K. Luscombe, A.W. Bosse, Y.L. Loo, Assessing the Huang-Brown description of tie chains for charge transport in conjugated polymers. ACS Macro Lett. 7(11), 1333–1338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. T.P. Lodge, Celebrating 50 years of macromolecules. Macromolecules 50(24), 9525–9527 (2017).

    Article  CAS  Google Scholar 

  4. K.W. Hall, S. Percec, W. Shinoda, M.L. Klein, Property decoupling across the embryonic nucleus-melt interface during polymer crystal nucleation. J. Phys. Chem. B 124(23), 4793–4804 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. D.A. Nicholson, G.C. Rutledge, An assessment of models for flow-enhanced nucleation in an n-alkane melt by molecular simulation. J. Rheol. 63(3), 465–475 (2019).

    Article  CAS  Google Scholar 

  6. L. Zou, W. Zhang, Molecular dynamics simulations of the effects of entanglement on polymer crystal nucleation. Macromolecules 55(12), 4899–4906 (2022).

    Article  CAS  Google Scholar 

  7. G. Liu, A.J. Müller, D. Wang, Confined crystallization of polymers within nanopores. Acc. Chem. Res. 54(15), 3028–3038 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. K. Shin, E. Woo, Y.G. Jeong, C. Kim, J. Huh, K.W. Kim, Crystalline structures, melting, and crystallization of linear polyethylene in cylindrical nanopores. Macromolecules 40(18), 6617–6623 (2007).

    Article  CAS  Google Scholar 

  9. C. Luo, M. Kröger, J.U. Sommer, Molecular dynamics simulations of polymer crystallization under confinement: entanglement effect. Polymer 109, 71–84 (2017).

    Article  CAS  Google Scholar 

  10. T. Yamamoto, Molecular dynamics simulation of polymer ordering. II. Crystallization from the melt. J. Chem. Phys. 115(18), 8675–8680 (2001).

    Article  CAS  Google Scholar 

  11. S. Nakagawa, H. Marubayashi, S. Nojima, Crystallization of polymer chains confined in nanodomains. Eur. Polym. J. 70, 262–275 (2015).

    Article  CAS  Google Scholar 

  12. A. Taden, K. Landfester, Crystallization of poly(ethylene oxide) confined in miniemulsion droplets. Macromolecules 36(11), 4037–4041 (2003).

    Article  CAS  Google Scholar 

  13. M.C. Staub, C.Y. Li, Polymer crystallization at liquid-liquid interface. Polym. Cryst. 1(4), e10045 (2018).

    Article  CAS  Google Scholar 

  14. W. Wang, M.C. Staub, T. Zhou, D.M. Smith, H. Qi, E.D. Laird, S. Cheng, C.Y. Li, Polyethylene nano crystalsomes formed at a curved liquid/liquid interface. Nanoscale 10, 268–276 (2018).

    Article  CAS  Google Scholar 

  15. Y. Ming, Z. Zhou, S. Zhang, Y. Wei, T. Hao, Y. Nie, Molecular simulation of crystallization of polymers confined in cylindrical nanodomain. Polymer 206, 122818 (2020).

    Article  CAS  Google Scholar 

  16. M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article  Google Scholar 

  17. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. Mackerell Jr., CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31(4), 671–690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A.D.J. MacKerell, D. Bashford, M. Bellott, R.L.J. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18), 3586–3616 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Y.K. Choi, S.J. Park, S. Park, S. Kim, N.R. Kern, J. Lee, W. Im, CHARMM-GUI polymer builder for modeling and simulation of synthetic polymers. J. Chem. Theory Comput. 17(4), 2431–2443 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Jo, T. Kim, V.G. Iyer, W. Im, CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29(11), 1859–1865 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984).

    Article  CAS  Google Scholar 

  23. M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12), 7182–7190 (1981).

    Article  CAS  Google Scholar 

  24. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, 2nd edn. (Oxford University Press, New York, 2017), pp.46–94

    Google Scholar 

  25. W. Zhang, L. Zou, Mismatch in nematic interactions leads to composition-dependent crystal nucleation in polymer blends. Macromolecules 56(6), 2234–2245 (2023).

    Article  CAS  Google Scholar 

  26. D. Morse, G. Fredrickson, Semiflexible polymers near interfaces. Phys. Rev. Lett. 73(24), 3235–3238 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. W. Zhang, E.D. Gomez, S.T. Milner, Surface-induced chain alignment of semiflexible polymers. Macromolecules 49(3), 963–971 (2016).

    Article  CAS  Google Scholar 

  28. C.B. Barber, D.P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996).

    Article  Google Scholar 

  29. J. Rudnick, G. Gaspari, The aspherity of random walks. J. Phys. A 19(4), L191 (1986).

    Article  Google Scholar 

  30. B. Wunderlich, G. Czornyj, A study of equilibrium melting of polyethylene. Macromolecules 10(5), 906–913 (1977).

    Article  CAS  Google Scholar 

Download references


W. Zhang acknowledges the support of this project by the start-up fund from Dartmouth College. Computational time was provided by the High-Performance Computing (HPC) at Dartmouth College. Elaine L. Jiao thanks the Women in Science Project at Dartmouth College for its support.


The research leading to these results received funding from Dartmouth College.

Author information

Authors and Affiliations



Conceptualization: Wenlin Zhang; Methodology: Anderson D.S. Duraes and Wenlin Zhang; Formal analysis and investigation: Caleb Liu, Elaine L. Jiao, and Anderson D.S. Duraes; Writing—original draft preparation: Caleb Liu, Elaine L. Jiao, and Anderson D.S. Duraes; Writing—review and editing: Caleb Liu, Anderson D.S. Duraes, and Wenlin Zhang; Funding acquisition: Wenlin Zhang; Resources: Wenlin Zhang; Supervision: Wenlin Zhang.

Corresponding authors

Correspondence to Anderson D. S. Duraes or Wenlin Zhang.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 53306 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Duraes, A.D.S., Jiao, E.L. et al. Interfaces and soft confinement promote crystallization in polymer nanodroplets. MRS Advances (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: