Skip to main content
Log in

Biobased films from unconventionally sourced starch (Cucurbita foetidissima Kunth) and oregano essential oil (Lippia berlandieri Schauer): A look at their physicochemical properties

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Buffalo gourd root starch (BGRS) and Mexican oregano essential oil (OEO) were used to obtain bioplastic films. The effect of different concentrations of OEO (0, 0.1, 0.3, 0.5, and 1.0% w/w in relation with starch) on the films physicochemical properties was evaluated. The additive inclusion significatively impacted on optical, mechanical, permeability, thermal, wettability, and morphological properties compared to the control, outstanding this effect on samples at low OEO concentrations (0.1 and 0.3% w/w respect to the BGRS), due to its component’s plasticizer capacity. FTIR analysis evidenced the different degrees of material’s components mixtures integration through the possible formation of hydrogen bonds to which the changes in the physicochemical properties of the obtained films could be attributed. SEM micrography showed an appropriated components integration for 0.1 and 0.5% OEO concentrations. According to their properties, these films may have a greater possibility to have practical applications, including food packaging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data obtained during the study are available from the corresponding author upon reasonable request.

Abbreviations

BGRS:

Buffalo gourd root starch

OEO:

Oregano essential oil

References

  1. D. Datta, G. Halder, Process. Saf. Environ. Protect. (2018). https://doi.org/10.1016/j.psep.2017.12.017

    Article  Google Scholar 

  2. L.J. Bastarrachea, D.E. Wong, M.J. Roman, Z. Lin, J.M. Goddard, Coatings (2015). https://doi.org/10.3390/coatings5040771

    Article  Google Scholar 

  3. S.J. Kwon, Y. Chang, J. Han, Food Microbiol. (2017). https://doi.org/10.1016/j.fm.2017.02.004

    Article  PubMed  Google Scholar 

  4. T. Tesfaye, Clean. Technol. Environ. Policy. (2018). https://doi.org/10.1007/s10098-018-1597-0

  5. F. Hernández-Centeno, H.Y. López-De la Peña, M. Hernández-González, C.A. Rodríguez-González, J.M. Tirado-Gallegos, C. Rios-Velasco, P.B. Zamudio-Flores, Food Measure (2020). https://doi.org/10.1007/s11694-020-00444-x

  6. M. Ghasemlou, N. Aliheidari, R. Fahmi, S. Shojaee-Aliabadi, B. Keshavarz, M.J. Cran, R. Khaksar, Carbohydr. Polym. (2013). https://doi.org/10.1016/j.carbpol.2013.07.026

    Article  PubMed  Google Scholar 

  7. P.B. Zamudio-Flores, E. Ochoa-Reyes, J.J. Ornelas-Paz, J.M. Tirado-Gallegos, L.A. Bello-Pérez, A. Rubio-Ríos, R.G. Cárdenas-Felix, Agrociencia 49, 483–498 (2015)

    Google Scholar 

  8. J.H. Suh, S.Y. Ock, G.D. Park, M.H. Lee, H.J. Park, Polym. Test. (2020). https://doi.org/10.1016/j.polymertesting.2020.106612

    Article  Google Scholar 

  9. Tirado-Gallegos J.M., Zamudio-Flores P.B., Ornelas-Paz, J.J., Rios-Velasco C., Orozco G.I.O., Espino-Díaz M., Baeza-Jiménez R., Buenrostro-Figueroa J.J., Aguilar-González, M.A., Lardizábal-Gutiérrez D., Hernández-González M., Hernández-Centeno F., López-De la Peña H.Y. Coatings. (2018). https://doi.org/10.3390/COATINGS8110384.

  10. K. Anchundia, S. Santacruz, J. Coloma, Rev Chilena Nutr. (2016). https://doi.org/10.4067/S0717-75182016000400009

    Article  Google Scholar 

  11. X. Yao, Y. Qin, M. Zhang, J. Zhang, C. Qian, J. Liu, Int. J. Biol. Macromol. (2021). https://doi.org/10.1016/j.ijbiomac.2021.04.152

    Article  PubMed  Google Scholar 

  12. P.N. Manoudis, I. Karapanagiotis, Prog. Org. Coat. (2014). https://doi.org/10.1016/j.porgcoat.2013.10.007

    Article  Google Scholar 

  13. D. Šuput, V. Lazić, L. Pezo, S. Markov, Ž Vaštag, L. Popović, A. Radulović, S. Ostojić, S. Zlatanović, S. Popović, Pol. J. Food Nutr. Sci. (2016). https://doi.org/10.1515/pjfns-2016-0008

    Article  Google Scholar 

  14. J. Li, F. Ye, L. Lei, G. Zhao, Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2018.04.093

    Article  PubMed  PubMed Central  Google Scholar 

  15. R. Akhter, F.A. Masoodi, T.A. Wani, S.A. Rather, Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.214

    Article  PubMed  Google Scholar 

  16. D. Muscat, R. Adhikari, S. McKnight, Q. Guo, B. Adhikari, J. Food Eng. (2013). https://doi.org/10.1016/j.jfoodeng.2013.05.033

    Article  Google Scholar 

  17. L. Dai, J. Zhang, F. Cheng, Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.197

    Article  PubMed  Google Scholar 

  18. L.J. Bellamy, The Infra-Red Spectra of Complex Molecules (Springer, London, 1975)

  19. A.G. de Souza, N.M.A. dos Santos, R.F. da Silva Torin, D. dos Santos Rosa, Int. J. Biol Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.226

  20. C. Cai, R. Ma, M. Duan, Y. Deng, T. Liu, D. Lu, LWT (2020). https://doi.org/10.1016/j.lwt.2020.109700

    Article  Google Scholar 

  21. O. Abbas, G. Compère, Y. Larondelle, D. Pompeu, H. Rogez, V. Baeten, Vib. Spectrosc. (2017). https://doi.org/10.1016/j.vibspec.2017.05.008

    Article  Google Scholar 

  22. E. Arezoo,, E. Mohammadreza, M. Maryam, M.N. Abdorreza, Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.11.244.

  23. A.E. Restrepo, J.D. Rojas, O.R. García, L.T. Sánchez, M.I. Pinzón, C.C. Villa, Food Sci. Technol. Int. (2018). https://doi.org/10.1177/1082013218792133

  24. M. Ramos, A. Jiménez, M. Peltzer, M.C. Garrigós, J. Food Eng. (2012). https://doi.org/10.1016/J.JFOODENG.2011.10.031

    Article  Google Scholar 

  25. R. Aguilar-Sánchez, R. Munguía-Pérez, F. Reyes-Jurado, A.R. Navarro-Cruz, T.S. Cid-Pérez, P. Hernández-Carranza, S.C. Beristain-Bauza, C.E. Ochoa-Velasco, R. Avila-Sosa, Molecules (2019). https://doi.org/10.3390/molecules24122340

    Article  PubMed  PubMed Central  Google Scholar 

  26. M.N. Abdorreza, L.H. Cheng, A.A. Karim, Food Hydrocoll. (2011). https://doi.org/10.1016/J.FOODHYD.2010.05.005

    Article  Google Scholar 

  27. T.J. Gutiérrez, G. González, Food Biophys. (2017). https://doi.org/10.1007/s11483-016-9458-z

    Article  Google Scholar 

  28. T. Karbowiak, F. Debeaufort, D. Champion, A. Voilley, J. Colloid Interface Sci. (2006). https://doi.org/10.1016/j.jcis.2005.07.030

    Article  PubMed  Google Scholar 

  29. J.A. do Evangelho, G. da Silva Dannenberg, B. Biduski, S.L.M. el Halal, D.H. Kringel, M.A. Gularte, A.M. Fiorentini, E. da Rosa Zavareze, Carbohydr. Polym. (2019). https://doi.org/10.1016/j.carbpol.2019.114981

Download references

Acknowledgments

Authors would like to thank Ing. Arturo Ramos Martínez and José Manuel Morales Xicohténcatl for the technical support provided in this work. The present study is a product of the Research Group in Carbohydrates, Packaging and Functional Foods (CEAF-Laboratory) of the CIAD-Cuauhtemoc, Chihuahua, Mexico, led by Dr. Paul Baruk Zamudio-Flores.

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Francisco Hernández-Centeno and Paul Baruk Zamudio-Flores; Methodology: Francisco Hernández-Centeno, Paul Baruk Zamudio-Flores, María Hernández-González, Juan Manuel Tirado-Gallegos, Ana Margarita Rodríguez-Hernández and Claudia Alejandra Rodríguez-González. Formal analysis and investigation: Francisco Hernández-Centeno, Haydee Yajaira López-De la Peña, Paul Baruk Zamudio-Flores, Ana Margarita Rodríguez-Hernández and Claudia Alejandra Rodríguez-González; Writing—original draft preparation: Francisco Hernández-Centeno; Writing—review and editing: Paul Baruk Zamudio-Flores, María Hernández-González, Claudio Rios-Velasco and Juan Manuel Tirado-Gallegos. Funding acquisition: Francisco Hernández-Centeno; Supervision: Paul Baruk Zamudio-Flores and María Hernández-González.

Corresponding author

Correspondence to Paul Baruk Zamudio-Flores.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with respect to the work described in this manuscript.

Ethical approval

Not applicable, because this manuscript does not contain any studies with human or animal subjects.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Centeno, F., Hernández-González, M., Tirado-Gallegos, J.M. et al. Biobased films from unconventionally sourced starch (Cucurbita foetidissima Kunth) and oregano essential oil (Lippia berlandieri Schauer): A look at their physicochemical properties. MRS Advances (2024). https://doi.org/10.1557/s43580-024-00824-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-024-00824-1

Navigation