Abstract
Nowadays, β-cyclodextrin (βCD) is considered a molecule of great interest for the pharmaceutical industry since it is widely used as a component in different formulations. Its properties as a complexing agent allow increasing the aqueous solubility of poorly soluble drugs, thereby improving their stability and bioavailability. βCD molecules exhibit moderate solubility in water. This phenomenon is caused by the high symmetry of its 3D structure, which limits its interaction with water molecules. When this symmetry is disrupted by the addition of adequate substituents in its structure, βCD becomes a molecule with significantly increased aqueous solubility. In this work, we compared the water solubility values for βCD and their improved derivatives and performed measurements of the quantitative water solubility for novel PAMAM-βCD and EDTA-βCD dendrimers in order to demonstrate that significant improvement in water solubility is possible using this new class of platforms, which are at least 27 times more soluble than βCD.
Graphical abstract
Similar content being viewed by others
Data availability
Not applicable.
References
H.C. Babaoglu, A. Bayrak, N. Ozdemir, N. Ozgun, J. Food Process. Preserv. 41(5), e13202 (2017). https://doi.org/10.1111/jfpp.13202
J. Rakmai, B. Cheirsilp, J.C. Mejuto, J. Simal-Gándara, A. Torrado-Agrasar, Ind. Crops Prod. 111, 219 (2018). https://doi.org/10.1016/j.indcrop.2017.10.027
J. Szejtli, Chem. Rev. 98(5), 1743 (1998). https://doi.org/10.1021/cr970022c
Y.A. Tayade, S.A. Padvi, Y.B. Wagh, D.S. Dalal, Tetrahedron Lett. 56(19), 2441 (2015). https://doi.org/10.1016/j.tetlet.2015.03.084
C. Jadhav, L.D. Khillare, M.R. Bhosle, Synth. Commun. 48(3), 233 (2018). https://doi.org/10.1080/00397911.2017.1390685
S. Gould, R.C. Scott, Food Chem. Toxicol. 43(10), 1451 (2005). https://doi.org/10.1016/j.fct.2005.03.007
Y. Liu, Y. Chen, X. Gao, J. Fu, L. Hu, Crit. Rev. Food Sci. Nutr. 62(10), 2627 (2022). https://doi.org/10.1080/10408398.2020.1856035
M.E. Davis, M.E. Brewster, Nat. Rev. Drug Discov. 3(12), 1023 (2004). https://doi.org/10.1038/nrd1576
C.S. Marques, S.G. Carvalho, L.D. Bertoli, J.C.O. Villanova, P.F. Pinheiro, D.C.M. Dos Santos, P.C. Bernardes, Food Res. Int. 119, 499 (2019). https://doi.org/10.1016/j.foodres.2019.01.016
D. Arockia Jency, M. Umadevi, G.V. Sathe, J. Raman Spectrosc. 46(4), 377 (2015). https://doi.org/10.1002/jrs.4654
E. Sabadini, T. Cosgrove, F.D.C. Egídio, Carbohydr. Res. 341(2), 270 (2006). https://doi.org/10.1016/j.carres.2005.11.004
P. Saokham, C. Muankaew, P. Jansook, T. Loftsson, Molecules (2018). https://doi.org/10.3390/molecules23051161
A.W. Coleman, I. Nicolis, N. Keller, J.P. Dalbiez, J. Incl. Phenom. Macrocycl. Chem. 13, 139 (1992). https://doi.org/10.1007/BF01053637
M. Cirri, F. Maestrelli, G. Corti, S. Furlanetto, P. Mura, J. Pharm. Biomed. Anal. 42(1), 126 (2006). https://doi.org/10.1016/j.jpba.2005.11.029
G. Crini, M. Morcellet, J. Sep. Sci. 25(13), 789 (2002). https://doi.org/10.1002/1615-9314(20020901)25:13%3c789::AID-JSSC789%3e3.0.CO;2-J
M.L. Hart, J. Dev. Drugs (2013). https://doi.org/10.4172/2329-6631.1000115
B. Devarakonda, D.P. Otto, A. Judefeind, R.A. Hill, M.M. de Villiers, Int. J. Pharm. 345, 142 (2007). https://doi.org/10.1016/j.ijpharm.2007.05.039
N.K. Jain, U. Gupta, Expert Opin. Drug Metab. Toxicol. 4, 1035 (2008). https://doi.org/10.1517/17425255.4.8.1035
A. Kasprzak, B. Dabrowski, A. Zuchowska, RSC Adv. 10, 23440 (2020). https://doi.org/10.1039/D0RA03694C
I. González-Méndez, A. Hameau, R. Laurent, C. Bijani, V. Bourdon, A.-M. Caminade, E. Rivera, K.I. Moineau-Chane Ching, Eur. J. Org. Chem. 2020, 1114–16 (2020). https://doi.org/10.1002/ejoc.201901823
I. González-Méndez, E. Loera-Loera, K. Sorroza-Martínez, M. Vonlanthen, F. Cuétara-Guadarrama, M.J. Bernad-Bernad, E. Rivera, J. Gracia-Mora, Pharmaceutics 14, 2363 (2022). https://doi.org/10.3390/pharmaceutics14112363
I. González-Méndez, K. Sorroza-Martínez, I. González-Sánchez, J. Gracia-Mora, M.J. Bernad-Bernad, M. Cerbón, E. Rivera, A.K. Yatsimirsky, Int. J. Mol. Sci. 24, 14422 (2023). https://doi.org/10.3390/ijms241914422
T. Loftsson, P. Jarho, M. Másson, T. Järvinen, Expert Opin. Drug Deliv. 2(2), 335 (2005). https://doi.org/10.1517/17425247.2.1.335
M.J. Jozwiakowski, K.A. Connors, Carbohydr. Res. 143, 51 (1985). https://doi.org/10.1016/S0008-6215(00)90694-3
U. Gupta, H.B. Agashe, A. Asthana, N.K. Jain, Biomacromolecules 7(3), 649 (2006). https://doi.org/10.1021/bm050802s
Acknowledgments
E.R. and K.S.-M. are grateful to CONACYT (Project 279380) and PAPIIT-DGAPA (Project IN103322) of Mexico.
Funding
This research received no external funding.
Author information
Authors and Affiliations
Contributions
Conceptualization: IG-M and ER; methodology: KS-M and IG-M; investigation: VEG-F and TES; data curation: IG-M and ER; and writing—original draft preparation: IG-M, KS-M, VEG-F, and TES. All authors have read and agreed with the published version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflicts of interest regarding this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sorroza-Martínez, K., González-Flores, V.E., Soto, T.E. et al. Comparing water solubility of β-cyclodextrin derivatives with dendrimers modified with β-cyclodextrin units, how significant is the change in water solubility?. MRS Advances 9, 270–274 (2024). https://doi.org/10.1557/s43580-023-00742-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43580-023-00742-8