Abstract
This paper presents a comprehensive overview of circuits and magnetics co-design for point-of-load voltage regulator modules (VRMs), which delivers power to microprocessors such as CPUs and GPUs that require low voltages and high currents. We examine the recent shift from the 12-volt to the 48-volt architecture to achieve higher efficiency and power density, and discuss the challenges associated with direct 48-volt power conversion to the point of load below 1 volt. Power delivery architectures for 48-volt VRMs are systematically reviewed and categorized, with emphasis placed the opportunities and challenges of circuits–magnetics co-design for energy efficiency, power density, and control bandwidth. Magnetic components, such as inductors and transformers, are essential components in VRMs, and a discussion on available materials and their limitations is provided. A comprehensive design approach for ultra-thin vertical multiphase coupled magnetics, including modeling magnetic core losses with machine learning, is detailed. This review paper aims to disseminate the progress and challenges in circuit and magnetics co-design, while outlining a vision for future advancements in device technology, magnetic materials, and packaging techniques including hybrid-switched-capacitor and coupled magnetics technologies.
Graphical abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Not applicable.
References
K. Radhakrishnan, M. Swaminathan, B.K. Bhattacharyya, Power delivery for high-performance microprocessors—challenges, solutions, and future trends. IEEE Trans. Components Packaging Manuf. Technol. 11(4), 655–671 (2021). https://doi.org/10.1109/TCPMT.2021.3065690
R. Dennard, F. Gaensslen, H.N. Yu, V. Rideout, E. Bassous, A. LeBlanc, Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circ. 9(5), 256–268 (1974). https://doi.org/10.1109/JSSC.1974.1050511
D. Disney, Z.J. Shen, Review of silicon power semiconductor technologies for power supply on chip and power supply in package applications. IEEE Trans. Power Electron. 28(9), 4168–4181 (2013). https://doi.org/10.1109/TPEL.2013.2242095
C.O. Mathúna, N. Wang, S. Kulkarni, S. Roy, Review of integrated magnetics for power supply on chip (PwrSoC). IEEE Trans. Power Electron. 27(11), 4799–4816 (2012). https://doi.org/10.1109/TPEL.2012.2198891
K. Rupp, 50 years of microprocessor trend data. https://github.com/karlrupp/microprocessor-trend-data
Preventing chips from burning up during test. https://semiengineering.com/preventing-chips-from-burning-up-during-test
P. Sandri, Increasing hyperscale data center efficiency: a better way to manage 54–V48-V-to-point-of-load direct conversion. IEEE Power Electron. Magaz. 4(4), 58–64 (2017). https://doi.org/10.1109/MPEL.2017.2760113
A. Bindra, Driven by density, efficiency at low cost, power integration reaches new heights: PSiPs and PwrSoCs are growing faster than the traditional power supplies. IEEE Power Electron. Magaz. 9(1), 14–19 (2022). https://doi.org/10.1109/MPEL.2022.3141293
S. Jiang, S. Saggini, C. Nan, X. Li, C. Chung, M. Yazdani, Switched tank converters. IEEE Trans. Power Electron. 34(6), 5048–5062 (2019). https://doi.org/10.1109/TPEL.2018.2868447
St 48v power conversion turnkey solution for servers. https://www.st.com/content/ccc/resource/
Max16610: Switched Tank Converter (STC) controller with integrated drivers. https://www.maximintegrated.com/en/products/interface/controllers-expanders/MAX16610.html
Lmg5200: 48 to 1 v or 40 a single-stage converter reference design. https://www.ti.com/lit/ug/tiduc72a/tiduc72a.pdf
48v datacenter solutions DC/DC power conversion for datacenter, open compute & AI applications. https://media.monolithicpower.com/48v-solution-product-brochure.pdf
Infineon ZSC topology. https://www.infineon.com/cms/en/applications/communication/computing-and-data-storage/48v-power-distribution/zsc-topology/
Power stamp alliance. https://powerstamp.org
Vicor, PRMTM regulator high efficiency converter. PRM48BH480x250A00 (2020). Rev. 1.7
Vicor, VTMTM current multiplier sine amplitude converterTM (SACTM). VTM48MP010x107AA1 (2017). Rev. 1.5
C.R. Sullivan, B.A. Reese, A.L.F. Stein, P.A. Kyaw, On size and magnetics: why small efficient power inductors are rare. In: 2016 international symposium on 3d power electronics integration and manufacturing (3D-PEIM) pp. 1–23 (2016). https://doi.org/10.1109/3DPEIM.2016.7570571
J. Li, A. Stratakos, A. Schultz, C. Sullivan, Using coupled inductors to enhance transient performance of multi-phase buck converters. Nineteenth Annu. IEEE Appl. Power Electron. Conf. Exposition 2, 1289–1293 (2004). https://doi.org/10.1109/APEC.2004.1295989
P.L. Wong, P. Xu, P. Yang, F. Lee, Performance improvements of interleaving VRMs with coupling inductors. IEEE Trans. Power Electron. 16(4), 499–507 (2001). https://doi.org/10.1109/63.931059
Q. Li, Y. Dong, F.C. Lee, D.J. Gilham, High-density low-profile coupled inductor design for integrated point-of-load converters. IEEE Trans. Power Electron. 28(1), 547–554 (2013). https://doi.org/10.1109/TPEL.2012.2196525
W. Huang, B. Lehman, Analysis and verification of inductor coupling effect in interleaved multiphase DC-DC converters. IEEE Trans. Power Electron. 31(7), 5004–5017 (2016). https://doi.org/10.1109/TPEL.2015.2479191
M. Chen, C.R. Sullivan, Unified models for coupled inductors applied to multiphase PWM converters. IEEE Trans. Power Electron. 36(12), 14155–14174 (2021). https://doi.org/10.1109/TPEL.2021.3088083
H. Li, S.R. Lee, M. Luo, C.R. Sullivan, Y. Chen, M. Chen, Magnet: a machine learning framework for magnetic core loss modeling, pp. 1–8 (2020). https://doi.org/10.1109/COMPEL49091.2020.9265869
H. Li, D. Serrano, T. Guillod, S. Wang, E. Dogariu, A. Nadler, M. Luo, V. Bansal, N.K. Jha, Y. Chen, C.R. Sullivan, M. Chen, How magnet: machine learning framework for modeling power magnetic material characteristics. IEEE Trans. Power Electron. 38(12), 15829–15853 (2023). https://doi.org/10.1109/TPEL.2023.3309232
M.H. Ahmed, C. Fei, F.C. Lee, Q. Li, Single-stage high-efficiency 48/1 V sigma converter with integrated magnetics. IEEE Trans. Industrial Electron. 67(1), 192–202 (2020). https://doi.org/10.1109/TIE.2019.2896082
A. Kumar, K.K. Afridi, Single-stage isolated 48V-to-1.8V point-of-load converter utilizing an impedance control network for wide input range operation, pp. 2003–2009 (2017). https://doi.org/10.1109/ECCE.2017.8096402
J. Baek, Y. Elasser, K. Radhakrishnan, H. Gan, J.P. Douglas, H.K. Krishnamurthy, X. Li, S. Jiang, C.R. Sullivan, M. Chen, Vertical stacked LEGO-PoL CPU voltage regulator. IEEE Trans. Power Electron. 37(6), 6305–6322 (2022). https://doi.org/10.1109/TPEL.2021.3135386
Y. Elasser, J. Baek, K. Radhakrishnan, H. Gan, J.P. Douglas, H.K. Krishnamurthy, X. Li, S. Jiang, V. De, C.R. Sullivan, M. Chen, Mini-LEGO CPU voltage regulator. IEEE Trans. Power Electron. (2024). https://doi.org/10.1109/TPEL.2023.3337171
N.M. Ellis, R.A. Abramson, R. Mahony, R.C.N. Pilawa-Podgurski, The symmetric dual inductor hybrid (SDIH) converter for direct 48V-to-PoL conversion. IEEE Trans. Power Electron. (2023). https://doi.org/10.1109/TPEL.2023.3259949
G.S. Seo, R. Das, H.P. Le, Dual inductor hybrid converter for point-of-load voltage regulator modules. IEEE Trans. Ind. Appl. 56(1), 367–377 (2020). https://doi.org/10.1109/TIA.2019.2941945
R.C.N. Pilawa-Podgurski, D.J. Perreault, Merged two-stage power converter with soft charging switched-capacitor stage in 180 nm CMOS. IEEE J. Solid-State Circ. 47(7), 1557–1567 (2012). https://doi.org/10.1109/JSSC.2012.2191325
D.M. Giuliano, M.E. D’Asaro, J. Zwart, D.J. Perreault, Miniaturized low-voltage power converters with fast dynamic response. IEEE J. Emerg. Select. Topics Power Electron 2(3), 395–405 (2014). https://doi.org/10.1109/JESTPE.2014.2331671
Y. Chen, P. Wang, H. Cheng, G. Szczeszynski, S. Allen, D.M. Giuliano, M. Chen, Virtual intermediate bus CPU voltage regulator. IEEE Trans. Power Electron. 37(6), 6883–6898 (2022). https://doi.org/10.1109/TPEL.2021.3130213
Y. Zhu, T. Ge, Z. Ye, R.C. Pilawa-Podgurski, A Dickson-squared hybrid switched-capacitor converter for direct 48 V to point-of-load conversion, pp. 1272–1278 (2022). https://doi.org/10.1109/APEC43599.2022.9773567
P. Wang, Y. Chen, G. Szczeszynski, S. Allen, D.M. Giuliano, M. Chen, MSC-PoL: hybrid GaN-Si multistacked switched-capacitor 48-V PwrSiP VRM for chiplets. IEEE Trans. Power Electron. 38(10), 12815–12833 (2023). https://doi.org/10.1109/TPEL.2023.3293022
N.M. Ellis, R.C. Pilawa-Podgurski, A symmetric dual-inductor hybrid dickson converter for direct 48V-to-PoL conversion, pp. 1267–1271 (2022). https://doi.org/10.1109/APEC43599.2022.9773452
K. Nishijima, K. Harada, T. Nakano, T. Nabeshima, T. Sato, Analysis of double step-down two-phase buck converter for VRM, pp. 497–502 (2005). https://doi.org/10.1109/INTLEC.2005.335149
M. Halamicek, T. McRae, A. Prodić, Cross-coupled series-capacitor quadruple step-down buck converter, pp. 1–6 (2020). https://doi.org/10.1109/APEC39645.2020.9124412
M. Ursino, R. Rizzolatti, G. Deboy, S. Saggini, K. Zufferli, High density hybrid switched capacitor sigma converter for data center applications. 2022 IEEE Appl. Power Electron. Conf. Exposition (2022). https://doi.org/10.1109/APEC43599.2022.9773659
A. Dago, M. Leoncini, S. Saggini, S. Levantino, M. Ghioni, Hybrid resonant switched-capacitor converter for 48–3.4 V direct conversion. IEEE Trans. Power Electron. (2022). https://doi.org/10.1109/TPEL.2022.3186790
Z. Ye, R.A. Abramson, T. Ge, R.C.N. Pilawa-Podgurski, Multi-resonant switched-capacitor converter: achieving high conversion ratio with reduced component number. IEEE Open J. Power Electron. 3, 492–507 (2022). https://doi.org/10.1109/OJPEL.2022.3181338
C. Steinmetz, On the law of hysteresis. Proc. IEEE 72(2), 197–221 (1984). https://doi.org/10.1109/PROC.1984.12842
D. Serrano, H. Li, S. Wang, T. Guillod, M. Luo, V. Bansal, N.K. Jha, Y. Chen, C.R. Sullivan, M. Chen, Why magnet: quantifying the complexity of modeling power magnetic material characteristics. IEEE Trans. Power Electron. 38(11), 14292–14316 (2023). https://doi.org/10.1109/TPEL.2023.3291084
H. Li, D. Serrano, S. Wang, M. Chen, Magnet-AI: Neural network as datasheet for magnetics modeling and material recommendation. IEEE Trans. Power Electron. 38(12), 15854–15869 (2023). https://doi.org/10.1109/TPEL.2023.3309233
E. Stenglein, B. Kohlhepp, D. Kübrich, M. Albach, T. Dürbaum, GaN-half-bridge for core loss measurements under rectangular AC voltage and dc bias of the magnetic flux density. IEEE Trans. Instrum. Measure 69(9), 6312–6321 (2020). https://doi.org/10.1109/TIM.2020.2972140
V. Thottuvelil, T. Wilson, H. Owen, High-frequency measurement techniques for magnetic cores. IEEE Trans. Power Electron. 5(1), 41–53 (1990). https://doi.org/10.1109/63.45998
J. Li, T. Abdallah, C. Sullivan, in: Conference record of the 2001 IEEE industry applications conference. 36th IAS annual meeting (Cat. No. 01CH37248), 4, pp. 2203–2210. (2001). https://doi.org/10.1109/IAS.2001.955931
R.P. Davies, C. Cheng, N. Sturcken, W.E. Bailey, K.L. Shepard, Coupled inductors with crossed anisotropy \({\rm cozrta/sio}_{2}\) multilayer cores. IEEE Trans. Magn. 49(7), 4009–4012 (2013). https://doi.org/10.1109/TMAG.2013.2237892
J. Baek, Y. Elasser, M. Chen, MIPS: multiphase integrated planar symmetric coupled inductor for ultrathin VRM. IEEE Trans. Power Electron. 38(5), 5609–5614 (2023). https://doi.org/10.1109/TPEL.2023.3236152
W.J. Lambert, M.J. Hill, K. Radhakrishnan, L. Wojewoda, A.E. Augustine, Package inductors for intel fully integrated voltage regulators. IEEE Trans. Components Packaging Manuf. Technol. 6(1), 3–11 (2016). https://doi.org/10.1109/TCPMT.2015.2505665
T. Sen, Y. Elasser, M. Chen, Origami inductors: foldable 3-D polyhedron air-coupled inductors for mhz power conversion, pp. 397–404 (2023). https://doi.org/10.1109/APEC43580.2023.10131510
S. Prabhakaran, C. Sullivan, T. O’Donnell, M. Brunet, S. Roy, in: 2004 IEEE 35th annual power electronics specialists conference (IEEE Cat. No.04CH37551), vol. 6, pp. 4467–4472 (2004). https://doi.org/10.1109/PESC.2004.1354790
N. Sturcken, E.J. O’Sullivan, N. Wang, P. Herget, B.C. Webb, L.T. Romankiw, M. Petracca, R. Davies, R.E. Fontana, G.M. Decad, I. Kymissis, A.V. Peterchev, L.P. Carloni, W.J. Gallagher, K.L. Shepard, A 2.5D integrated voltage regulator using coupled-magnetic-core inductors on silicon interposer. IEEE J. Solid-State Circ. 48(1), 244–254 (2013). https://doi.org/10.1109/JSSC.2012.2221237
N. Sturcken, R. Davies, H. Wu, M. Lekas, K. Shepard, K.W. Cheng, C.C. Chen, Y.S. Su, C.Y. Tsai, K.D. Wu, J.Y. Wu, Y.C. Wang, K.C. Liu, C.C. Hsu, C.L. Chang, W.C. Hua, A. Kalnitsky, Magnetic thin-film inductors for monolithic integration with CMOS, pp. 11.4.1–11.4.4 (2015). https://doi.org/10.1109/IEDM.2015.7409676
K. Bharath, K. Radhakrishnan, M.J. Hill, P. Chatterjee, H. Hariri, S. Venkataraman, H.T. Do, L. Wojewoda, S. Srinivasan, in, 2021 IEEE 71st electronic components and technology conference (ECTC), pp. 1286–1292 (2021). https://doi.org/10.1109/ECTC32696.2021.00208
A.J. Hanson, J.A. Belk, S. Lim, C.R. Sullivan, D.J. Perreault, Measurements and performance factor comparisons of magnetic materials at high frequency. IEEE Trans. Power Electron. 31(11), 7909–7925 (2016). https://doi.org/10.1109/TPEL.2015.2514084
P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on MnZn ferrites: synthesis, characterization and applications. Ceram. Int. 46(10), 15740–15763 (2020). https://doi.org/10.1016/j.ceramint.2020.03.287
L.G. Petrescu, M.C. Petrescu, V. Ionita, E. Cazacu, C.D. Constantinescu, Magnetic properties of manganese-zinc soft ferrite ceramic for high frequency applications. Materials 12(19), 3173 (2019). https://doi.org/10.3390/ma12193173
A. Costa, E. Tortella, M. Morelli, R. Kiminami, Synthesis, microstructure and magnetic properties of Ni-Zn ferrites. J. Magn. Magn. Mater. 256(1), 174–182 (2003). https://doi.org/10.1016/S0304-8853(02)00449-3
Y. Zhu, Z. Ye, T. Ge, R. Abramson, R.C.N. Pilawa-Podgurski, A multi-phase cascaded series-parallel (CaSP) hybrid converter for direct 48 V to point-of-load applications, pp. 1973–1980 (2021). https://doi.org/10.1109/ECCE47101.2021.9596032
M. Ursino, S. Saggini, S. Jiang, C. Nan, High density 48V-to-PoL VRM with hybrid pre-regulator and fixed-ratio buck, pp. 498–505 (2020). https://doi.org/10.1109/APEC39645.2020.9124561
P.L. Wong, Q. Wu, P. Xu, B. Yang, F. Lee, Investigating coupling inductors in the interleaving QSW VRM. Fifteenth Annu. IEEE Appl. Power Electron. Conf. Exposition (Cat. No.00CH37058) 2, 973–978 (2000). https://doi.org/10.1109/APEC.2000.822807
J. Li, C. Sullivan, A. Schultz, Coupled-inductor design optimization for fast-response low-voltage DC-DC converters. Seventeenth Annu. IEEE Appl. Power Electron. Conf. Exposition (Cat. No. 02CH37335) 2, 817–823 (2002). https://doi.org/10.1109/APEC.2002.989338
Y. Elasser, J. Baek, C.R. Sullivan, M. Chen, Modeling and design of vertical multiphase coupled inductors with inductance dual model, pp. 1717–1724 (2021). https://doi.org/10.1109/APEC42165.2021.9487344
Texas instruments, using the LMG5200POLEVM-10 48V to point of load EVM. LMG5200POLEVM (2016). Rev. (Oct 2017)
R. Das, G.S. Seo, D. Maksimovic, H.P. Le, An 80-W 94.6%-efficient multi-phase multi-inductor hybrid converter (2019). https://doi.org/10.1109/APEC.2019.8721952
Z. Ye, R.A. Abramson, Y.L. Syu, R.C.N. Pilawa-Podgurski, MLB-PoL: a high performance hybrid converter for direct 48 V to point-of-load applications, pp. 1–8 (2020). https://doi.org/10.1109/COMPEL49091.2020.9265870
Bel-Power, Main & satellite power stamp 48V-to-PoL isolated DC-DC converters. https://www.belfuse.com/resources/datasheets/powersolutions/ds-bps-48-v-to-pol-power-stamp.pdf
J Zhu, D. Maksimovic, 48 V-to-1 V transformerless stacked active bridge converters with merged regulation stage (2020). https://doi.org/10.1109/COMPEL49091.2020.9265671
H. Cao, X. Yang, C. Xue, L. He, Z. Tan, M. Zhao, Y. Ding, W. Li, W. Qu, A 12-level series-capacitor 48–1V DC-DC converter with on-chip switch and GaN hybrid power conversion. IEEE J. Solid-State Circ. 56(12), 3628–3638 (2021). https://doi.org/10.1109/JSSC.2021.3104328
Analog Devices, 54VIN dual 25A, single 50A \(\mu \) module regulator with digital power system management. LTM4664 (2021). Rev. B
Y. Zhu, T. Ge, N.M. Ellis, L. Horowitz, R.C.N. Pilawa-Podgurski, A 500-A/48-to-1-V switching bus converter: a hybrid switched-capacitor voltage regulator with 94.7% peak efficiency and 464-W/in3 power density, pp. 1989–1996 (2023). https://doi.org/10.1109/APEC43580.2023.10131359
Acknowledgments
The authors would like to acknowledge the Semiconductor Research Corporation (SRC), Google LLC, Intel Corporation, pSemi, the ARPA-E CIRCUITS program, the ARPA-E DIFFERENTIATE program, and the Princeton SEAS Industrial Collaboration Fund.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Elasser, Y., Li, H., Wang, P. et al. Circuits and magnetics co-design for ultra-thin vertical power delivery: A snapshot review. MRS Advances 9, 12–24 (2024). https://doi.org/10.1557/s43580-023-00724-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43580-023-00724-w